JOIV : International Journal on Informatics Visualization
Vol 9, No 6 (2025)

Attention Mechanism with Kalman Smoothing Improved Long Short-Term Memory Mechanism for Obesity Weight Forecasting

Pranolo, Andri (Unknown)
Utami, Nurul Putrie (Unknown)
Anasyua, Fairuz Khairunnisa (Unknown)



Article Info

Publish Date
30 Nov 2025

Abstract

This study aims to evaluate and compare the performance of several variants of Long Short-Term Memory (LSTM) based models in predicting obesity weight data. The main contribution of this research was to perform an extensive assessment of the effectiveness of LSTM-based models, including the combination of Attention-LSTM with Kalman Smoothing (KS), using two different data normalization methods (Z-score and Min-Max). This research used a publicly available dataset on obesity levels based on eating habits and physical condition, available at the UCI Machine Learning Repository. The models evaluated include the standard LSTM, Attention-LSTM, KS-LSTM, and the proposed KS-Attention-LSTM. The evaluation is conducted using the Root Mean Square Error (RMSE), the Mean Absolute Percentage Error (MAPE), and the coefficient of determination (R²). The results showed that the proposed KS-Attention-LSTM model with Min-Max normalization achieved the lowest MAPE (0.28372) and the highest R² (0.79527) among the models. This suggests that the proposed model offers advantages in terms of prediction accuracy and has a good ability to handle data variations. Therefore, the KS-Attention-LSTM model with Min-Max normalization is strongly recommended for practical implementation, particularly for time-series data prediction in the health sector. This research is beneficial and contributes an effective alternative model that improves prediction accuracy, supports decision-making in the health sector, and enriches forecasting methods. 

Copyrights © 2025






Journal Info

Abbrev

joiv

Publisher

Subject

Computer Science & IT

Description

JOIV : International Journal on Informatics Visualization is an international peer-reviewed journal dedicated to interchange for the results of high quality research in all aspect of Computer Science, Computer Engineering, Information Technology and Visualization. The journal publishes state-of-art ...