JURNAL TEKNOLOGI DAN OPEN SOURCE
Vol. 8 No. 2 (2025): Jurnal Teknologi dan Open Source, December 2025

House Price Prediction in Surabaya Using Backpropagation Neural Network

Pamungkas, Dimas Fajri (Unknown)
Najaf, Abdul Rezha Efrat (Unknown)
Permatasari, Reisa (Unknown)



Article Info

Publish Date
22 Nov 2025

Abstract

This research develops a house price prediction system in Surabaya using the Backpropagation Neural Network (BPNN) method. The dataset was obtained through web scraping of property listings, resulting in 3,435 records with 52 attributes. To improve stability, the target variable (house price) was transformed using natural logarithms. Several neural network architectures were tested, and the best configuration [32, 64, 32] achieved Mean Absolute Error (MAE) of 0.3125, Root Mean Squared Error (RMSE) of 0.4201, R² of 0.7138, and Mean Absolute Percentage Error (MAPE) of 1.46%. A multi-run evaluation of 20 iterations confirmed consistency of results. The model was implemented as a web-based application using Flask, allowing users to predict house prices in real-time. This research shows that BPNN is reliable for property price forecasting and can support decision-making in the housing market.

Copyrights © 2025






Journal Info

Abbrev

JTOS

Publisher

Subject

Computer Science & IT

Description

Jurnal Teknologi dan Open Source menerbitkan naskah ilmiah. yang berkaitan dengan sistem informasi, teknologi informasi dan aplikasi open source secara berkala (2 kali setahun). Jurnal ini dikelola dan diterbitkan oleh Program Studi Teknik Informatika Fakultas Teknik, Universitas Islam Kuantan ...