Abstrak − Isu lingkungan seperti pertambangan di Papua memicu diskusi luas di YouTube, namun sering diwarnai ujaran kebencian yang melanggar prinsip etika digital (netiket). Penelitian ini menganalisis sentimen dan mendeteksi ujaran kebencian dalam komentar YouTube menggunakan pendekatan Natural Language Processing (NLP). Sebanyak 3.827 komentar dari kanal Greenpeace Indonesia dikumpulkan dan dipraproses melalui tahapan konversi huruf kecil, penghapusan tag HTML dan URL, penghapusan angka, normalisasi kata tidak baku, penghapusan simbol non-alfabetik, stemming dengan Sastrawi Stemmer, dan penghapusan stopword. Analisis sentimen dilakukan dengan model w11wo/indonesian-roberta-base-sentiment-classifier, sedangkan deteksi ujaran kebencian menggunakan model OwLim/indonesian-roberta-hate-speech. Hasil menunjukkan 57,7% komentar bersentimen negatif, dan 52,4% di antaranya mengandung ujaran kebencian. Analisis linguistik mengungkap strategi dehumanisasi, kosakata ofensif, dan tuduhan kolektif yang melanggar netiket. Penelitian ini menyoroti perlunya integrasi teknologi moderasi konten berbasis NLP dengan pendidikan etika digital untuk menciptakan ekosistem diskusi yang sehat dan beradab di ruang digital.Kata Kunci: Ujaran Kebencian; NLP; Analisis Sentimen; YouTube; Netiket; Etika Digital; Abstract - Environmental issues such as mining in Papua spark extensive discussions on YouTube, but are often marred by hate speech violating digital ethics principles (netiquette). This study analyzes sentiment and detects hate speech in YouTube comments using a Natural Language Processing (NLP) approach. A total of 3,827 comments from Greenpeace Indonesia's channel were collected and preprocessed through lowercase conversion, HTML and URL removal, number removal, informal word normalization, non-alphabetic symbol removal, stemming using Sastrawi Stemmer, and stopword removal. Sentiment analysis was conducted using the w11wo/indonesian-roberta-base-sentiment-classifier model, while hate speech detection employed the OwLim/indonesian-roberta-hate-speech model. Results show 57.7% of comments had negative sentiment, with 52.4% containing hate speech. Linguistic analysis revealed dehumanization strategies, offensive vocabulary, and collective accusations that violate netiquette. This research highlights the need to integrate NLP-based content moderation technology with digital ethics education to create a healthy and civilized discussion ecosystem in digital spaces. Keywords: Hate Speech, NLP, Sentiment Analysis, YouTube, Netiquette, Digital Ethics;
Copyrights © 2025