Pertanian adalah sektor penting yang menyediakan pangan bagi masyarakat. Khususnya, pada tanaman tomat, sering kali terganggu oleh berbagai penyakit daun yang dapat menurunkan hasil panen dan menyebabkan kerugian bagi petani. Penelitian ini bertujuan mengembangkan model identifikasi citra daun tomat menggunakan arsitektur NASNet Mobile untuk mengidentifikasi penyakit secara otomatis. Dataset terdiri dari empat kelas, yaitu Healty, Leaf Mold, Septoria Leaf Spot, dan Tomato Yellow Leaf Spot. Model dilatih menggunakan model NASNet Mobile dan dievaluasi menggunakan metrik akurasi, presisi, recall, dan f1-score. Hasil menunjukkan bahwa model NASNet Mobile mencapai akurasi sebesar 69,97% dengan macro average f1-score sebesar 0,67%. Penelitian ini memberikan kontribusi awal dalam pemanfaatan deep learning untuk pertanian presisi, khususnya dalam mendukung pengambilan keputusan petani guna mengurangi risiko kerugian hasil panen akibat keterlambatan penanganan penyakit.
Copyrights © 2025