Deteksi objek yang merupakan bagian dari computer vision, telah banyak digunakan di berbagai bidang industri terutama perdagangan atau ritel. Salah satu algoritma deteksi objek yang dapat digunakan adalah YOLOv8, dikenal karena kemampuannya yang akurat dalam melakukan deteksi secara real-time. Penelitian ini, berfokus pada pembuatan model deteksi objek untuk produk mi instan menggunakan algoritma YOLOv8. Tujuan dari penelitian ini adalah untuk mengetahui performa algoritma YOLOv8 dalam memprediksi sebuah produk mi instan. Dalam proses training, dilakukan beberapa experiment untuk mengetahui komposisi dalam memperoleh hasil terbaik. Model diukur menggunakan confusion matrix dan hasil terbaik didapat saat model dilatih menggunakan epoch 50 dan batch 32, model mendapat nilai mAP50-95 sebesar 0.635. Meskipun masih dibawah nilai normal yaitu 0.7, model ini sudah cukup baik jika diterapkan ke sistem. Untuk semua kelas, model tersebut memiliki nilai precision 0.97 dan recall 0.969, nilai ini cukup tinggi untuk model yang dilatih dengan total 1050 gambar.
Copyrights © 2025