JASIEK (Jurnal Aplikasi Sains, Informasi, Elektronika dan Komputer)
Vol. 7 No. 2 (2025): Desember 2025

Sistem Cerdas untuk Menganalisis Parameter Pengisian Cepat Baterai Kendaraan Listrik menggunakan Raspberry PI 4

Advent Samuel Halomoan (Program Studi D4 Teknik Elektro, Jurusan Teknik Elektro, Politeknik Negeri Sriwijaya)
Amperawan Amperawan (Program Studi D4 Teknik Elektro, Jurusan Teknik Elektro, Politeknik Negeri Sriwijaya)
Sabilal Rasyad (Program Studi D4 Teknik Elektro, Jurusan Teknik Elektro, Politeknik Negeri Sriwijaya)



Article Info

Publish Date
22 Dec 2025

Abstract

Advances in electric vehicle (EV) technology drive the need for fast and efficient battery charging. However, fast charging can cause problems such as overheating, cell degradation, and decreased battery performance. This research develops a Long Short-Term Memory Recurrent Neural Network (LSTM-RNN)-based intelligent system running on Raspberry Pi to monitor and predict battery charging parameters in real-time. The system processes data from voltage, current, power, temperature, and State of Charge (SOC) sensors to detect critical conditions such as overcharging and overheating. Equipped with a Human-Machine Interface (HMI) for live data visualization, the system is able to predict SOC with high accuracy (MAE 1.97%, RMSE 2.84%) and respond to automatic control in less than 2 seconds. This integration improves the efficiency and safety of EV battery fast charging.

Copyrights © 2025






Journal Info

Abbrev

jasiek

Publisher

Subject

Computer Science & IT Control & Systems Engineering Decision Sciences, Operations Research & Management Electrical & Electronics Engineering Mathematics

Description

Sistem Tenaga Generator, Distribusi Daya, Konversi Daya Listrik, Sistem Perlindungan dan Teknologi Bahan elektrik Sinyal, Sistem, dan Elektronik Pemrosesan Sinyal Digital, Pemrosesan Gambar, Sistem Robot, Sistem Kontrol dan Sistem Embeded Sistem komunikasi Telekomunikasi, Komunikasi Nirkabel dan ...