Jurnal Nasional Teknologi Informasi dan Aplikasinya
Vol. 3 No. 4 (2025): JNATIA Vol. 3, No. 4, Agustus 2025

Klasifikasi Genre Buku Berdasarkan Sinopsis Menggunakan Naïve Bayes dan Logistic Regression

Anak Agung Anom Witaradiani (Universitas Udayana)
I Gede Arta Wibawa (Universitas Udayana)
Putu Praba Santika (Universitas Udayana)



Article Info

Publish Date
01 Aug 2025

Abstract

Genre is an important element in book categorization based on specific content characteristics or themes. However, manual classification processes are no longer efficient due to the increasing volume of literature. This study aims to compare the performance of Naïve Bayes and Logistic Regression algorithms in book genre classification based on synopses. The dataset used is secondary data obtained from Kaggle. The dataset consists of 4,535 samples after the preprocessing stage, with feature representation using the TF-IDF method. To address class distribution imbalance, the Synthetic Minority Over-sampling Technique (SMOTE) was applied. The evaluation was conducted using accuracy, precision, recall, and F1-score metrics. The experimental results show that Logistic Regression achieved the best performance with 75.19% accuracy and 75.16% F1-score, while Naïve Bayes achieved 72.22% accuracy and 72.11% F1-score. Based on this evaluation, Logistic Regression is considered more effective in classifying book genres from synopsis text.

Copyrights © 2025






Journal Info

Abbrev

jnatia

Publisher

Subject

Computer Science & IT Engineering

Description

JNATIA (Jurnal Nasional Teknologi Informasi dan Aplikasinya) adalah jurnal yang berfokus pada teori, praktik, dan metodologi semua aspek teknologi di bidang ilmu komputer, informatika dan teknik, serta ide-ide produktif dan inovatif terkait teknologi baru dan teknologi informasi. Jurnal ini memuat ...