Sinkron : Jurnal dan Penelitian Teknik Informatika
Vol. 10 No. 1 (2026): Article Research January 2026

Multi-Disease Retinal Classification Using EfficientNet-B3 and Targeted Albumentations: A Benchmark on Kaggle Retinal Fundus Images Dataset

Saputra, Kurniawan Aji (Unknown)
Alzami, Farrikh (Unknown)
Kurniawan, Defri (Unknown)
Naufal, Muhammad (Unknown)
Muslih, Muslih (Unknown)
Megantara, Rama Aria (Unknown)
Pramunendar, Ricardus Anggi (Unknown)



Article Info

Publish Date
03 Jan 2026

Abstract

Retinal diseases remain one of the leading causes of blindness worldwide. This study develops a deep learning pipeline for multiclass retinal disease classification using EfficientNet-B3 combined with Albumentations to improve generalization. We target four classes: cataract, diabetic retinopathy, glaucoma, and normal. We use the Kaggle Retinal Disease dataset (4,217 fundus images) divided into 70% training, 10% validation, and 20% testing. Images are resized to 224×224 and augmented with horizontal flip, random brightness contrast, CLAHE, shiftscale rotate, crop, gamma correction, and elastic transformation. The EfficientNet-B3 backbone is refined after head training with warm-up and learning rate regularization (batch normalization, dropout). After 50 epochs, the best validation performance reaches 0.9526, and on the hold-out test set, the model achieves 95.38% overall accuracy. The F1 scores per class were 1.0000 (diabetic retinopathy), 0.9685 (cataract), 0.9255 (normal), and 0.9184 (glaucoma). Confusion analysis showed that most errors involved glaucoma being misclassified as normal, likely due to optic disc similarities. These results demonstrate that EfficientNet-B3 with targeted augmentation provides accurate and reliable multi-disease screening of fundus images, with the potential to support faster and more consistent triage in clinical workflows. Future research should expand clinical validation and explore attention mechanisms or multimodal input to reduce glaucoma-normal ambiguity.

Copyrights © 2026






Journal Info

Abbrev

sinkron

Publisher

Subject

Computer Science & IT

Description

Scope of SinkrOns Scientific Discussion 1. Machine Learning 2. Cryptography 3. Steganography 4. Digital Image Processing 5. Networking 6. Security 7. Algorithm and Programming 8. Computer Vision 9. Troubleshooting 10. Internet and E-Commerce 11. Artificial Intelligence 12. Data Mining 13. Artificial ...