Sinkron : Jurnal dan Penelitian Teknik Informatika
Vol. 10 No. 1 (2026): Article Research January 2026

User Satisfaction in Moo Opinion App: Machine Learning for Cooperative Segmentation

Megawati, Citra Dewi (Unknown)
Palevi, Bima Romadhon Parada Dian (Unknown)
Teo Pei Kian (Unknown)
Ramanda, Pramadika (Unknown)



Article Info

Publish Date
04 Jan 2026

Abstract

This study addresses the critical need to understand digital application user satisfaction within the agricultural cooperative sector, specifically for the Moo Opinion application at the Village Unit Dairy Cooperative (KUD). The study's primary novelty lies in the implementation of an integrated, sequential Machine Learning framework—combining Random Forest (RF), Principal Component Analysis (PCA), and K-Means Clustering—to provide a granular analysis of user behavior in a specialized dairy ecosystem. The methodology first utilized RF for key feature selection, followed by PCA for dimensionality reduction, and K-Means for precise user segmentation. Primary data was collected from 40 respondents (20 farmers, 20 customers). Key findings reveal that Service Quality (0.42) and Milk Quality (0.36) are the most significant drivers of satisfaction, considerably outweighing economic factors like Milk Price (0.08). PCA identified two core satisfaction dimensions: Quality-Service Synergy (explaining 56.7% variance) and Structural-Economic Factors (explaining 25.7% variance), confirming the dominance of non-economic aspects. K-Means Clustering successfully identified three segments: Highly Satisfied (45%), Moderately Satisfied (38%), and Low Satisfaction (17%), with high cluster validity (Silhouette Coefficient 0.71). A recognized limitation of this study is the small sample size (N=40), which may affect the generalizability of the findings to larger cooperative populations. However, the results offer significant practical implications, highlighting the need for KUD to prioritize digital service quality and product value over pricing strategies to enhance loyalty and prevent churn.

Copyrights © 2026






Journal Info

Abbrev

sinkron

Publisher

Subject

Computer Science & IT

Description

Scope of SinkrOns Scientific Discussion 1. Machine Learning 2. Cryptography 3. Steganography 4. Digital Image Processing 5. Networking 6. Security 7. Algorithm and Programming 8. Computer Vision 9. Troubleshooting 10. Internet and E-Commerce 11. Artificial Intelligence 12. Data Mining 13. Artificial ...