In this work, we propose fog-based energy-delay optimization (F-EDO) approach and benchmark its performance against the cloud-based energydelay optimization (C-EDO) method, focusing on energy consumption and delay. Unlike previous studies that optimize energy or delay separately, FEDO minimizes both metrics simultaneously, achieving up to 52.2% energy savings with near-zero delay. Additionally, increasing the number of users also leads to energy savings. This is due to the optimized placement of fog servers at the access layer which reduces network energy consumption compared to C-EDO. F-EDO also significantly reduces delay, with negligible delay compared to C-EDO due to fog servers are placed closer to the users which minimized the transmission distances. Besides, the results also show that the energy saving in F-EDO compared to the C-EDO increased as the processing capacity of the processing server increased while maintaining its minimal delay. Overall, F-EDO proves to be a more energyefficient and lower-delay solution for IoT networks, offering a better alternative to cloud-based offloading.
Copyrights © 2026