AbstrakPenentuan peminatan akademik mahasiswa merupakan tahapan penting dalam pendidikan tinggi karena berpengaruh terhadap keberhasilan studi dan pengembangan kompetensi. Namun, proses penentuan peminatan sering kali masih dilakukan secara subjektif dan belum sepenuhnya berbasis data akademik. Penelitian ini bertujuan untuk membandingkan performa algoritma Support Vector Machine (SVM) dan K-Nearest Neighbors (KNN) dalam memprediksi peminatan akademik mahasiswa Program Studi Manajemen Universitas Muhammadiyah Makassar. Data penelitian bersumber dari nilai mata kuliah inti mahasiswa angkatan 2018 hingga 2021 yang telah melalui tahapan prapemrosesan dan pelabelan ke dalam tiga konsentrasi, yaitu Sumber Daya Manusia, Pemasaran, dan Keuangan. Metode penelitian dilakukan dengan membangun model klasifikasi menggunakan algoritma SVM dan KNN, kemudian dievaluasi menggunakan metrik akurasi, precision, recall, dan f1-score dengan variasi parameter serta pembagian data latih dan data uji. Hasil pengujian menunjukkan bahwa algoritma SVM dengan kernel Radial Basis Function (RBF) dan test size 0,1 menghasilkan performa terbaik dengan nilai akurasi sebesar 70,55 persen. Sementara itu, algoritma KNN dengan nilai k sebesar lima, metrik jarak Euclidean, dan test size 0,1 memperoleh akurasi sebesar 57,53 persen. Temuan ini menunjukkan bahwa SVM memiliki kemampuan klasifikasi yang lebih baik dan stabil dibandingkan KNN, sehingga lebih layak diterapkan sebagai model pendukung sistem prediksi peminatan akademik mahasiswa berbasis pembelajaran mesin.Kata kunci: Support Vector Machine, K-Nearest Neighbors, Machine Learning.Abstract Determining academic specialization for university students is a crucial stage in higher education because it directly influences study success and competency development. However, the process is often conducted subjectively and is not fully based on academic data. This study aims to compare the performance of Support Vector Machine and K-Nearest Neighbors algorithms in predicting academic specialization of Management students at Universitas Muhammadiyah Makassar. The dataset consists of core course grades from cohorts 2018 to 2021 that were preprocessed and labeled into three concentrations: Human Resource Management, Marketing, and Finance. The research method involved building classification models using SVM and KNN, which were evaluated using accuracy, precision, recall, and F1-score with various parameter settings and train–test splits. The results show that SVM with a Radial Basis Function kernel and a test size of 0.1 achieved the best performance with an accuracy of 70.55 percent. Meanwhile, KNN with k equal to five, Euclidean distance, and a test size of 0.1 obtained an accuracy of 57.53 percent. These findings indicate that SVM provides more stable and accurate classification than KNN for academic specialization prediction. Therefore, SVM is considered more suitable as a machine learning based decision support model for academic specialization purposes effectively.Keyword: Support Vector Machine, K-Nearest Neighbors, Machine Learning.
Copyrights © 2025