Latar Belakang: Bahasa Isyarat Indonesia (BISINDO) menjadi media komunikasi primer bagi komunitas tunarungu di Indonesia. Akan tetapi, tingkat pemahaman masyarakat umum terhadap BISINDO masih minim, sehingga dibutuhkan inovasi teknologi untuk mengatasi hambatan komunikasi ini. Tujuan: Studi ini bertujuan untuk mengevaluasi efektivitas integrasi algoritma Random Forest dengan sistem ekstraksi fitur MediaPipe Holistic dalam mengidentifikasi gestur alfabet statis BISINDO secara tepat dan efisien. Metode: Riset ini menerapkan pendekatan kuantitatif eksperimental melalui pengumpulan data gestur alfabet BISINDO (A–Z kecuali J dan R). Setiap gerakan direkam menggunakan MediaPipe Holistic untuk menghasilkan 150 fitur landmark tiga dimensi. Dataset diseimbangkan dan diolah menggunakan model Random Forest dengan konfigurasi standar. Hasil: Model yang dikembangkan menunjukkan tingkat akurasi 100% pada dataset pengujian dan 96% pada data baru dari pengguna yang berbeda, mengindikasikan performa klasifikasi yang optimal dan kemampuan generalisasi yang baik. Kesimpulan: Integrasi MediaPipe Holistic dan Random Forest terbukti efektif dalam klasifikasi gestur BISINDO dan memiliki potensi untuk diimplementasikan dalam aplikasi penerjemah bahasa isyarat real-time yang inklusif.
Copyrights © 2025