Journal of Degraded and Mining Lands Management
Vol. 13 No. 1 (2026)

Path analysis of “new” humic acid derived from water hyacinth on phosphorus dynamics in P-deficient Inceptisols and chili response under intensive cultivation

Sofyan, Emma Trinurani (Unknown)
Hermawan, Mega Kartika (Unknown)
Sudirja, Rija (Unknown)
Nurbaity, Anne (Unknown)
Fitriatin, Betty Natalie (Unknown)
Mulyani, Oviyanti (Unknown)
Setiawati, Mieke Rochimi (Unknown)
Djuansah, Muhamad Rahman (Unknown)



Article Info

Publish Date
01 Jan 2026

Abstract

Phosphorus (P) deficiency in intensively cultivated Inceptisols is a persistent problem, not only because of low P reserves but also because of ongoing soil degradation, which reduces fertilizer use efficiency and is characteristic of degraded soils. This study aimed to develop a “new” humic acid from water hyacinth biomass (WHL) through accelerated aerobic decomposition using lignocellulolytic microorganisms and to evaluate its effectiveness in improving soil P dynamics and chili growth responses. The experiment was conducted on P-deficient Inceptisols of the Jatinangor series characterized by low P availability and high metal content. Water hyacinth collected from local reservoirs and rivers was aerobically decomposed with selected microbial starters to enhance humification. WHL was applied in combination with inorganic P fertilizer (SP-36), and its effects on soil P availability, phosphorus dynamics, and chili pepper growth and yield were evaluated using path analysis. The results showed that WHL significantly improved P dynamics mainly through an indirect mechanism involving increased P availability and reduced P fixation, thereby improving chili growth and yield. Application of WHL at a rate of 30 kg ha?¹ combined with SP-36 at a rate of 250 kg ha?¹ produced responses comparable to those obtained with commercial humic acid. These findings indicate that WHL has strong potential as a renewable and cost-effective alternative source of humic acid to improve phosphorus efficiency, restore soil chemical function, and reduce dependence on inorganic P fertilizers in degraded Inceptisols under intensive cultivation.

Copyrights © 2026






Journal Info

Abbrev

jdmlm

Publisher

Subject

Agriculture, Biological Sciences & Forestry Biochemistry, Genetics & Molecular Biology

Description

Journal of Degraded and Mining Lands Management is managed by the International Research Centre for the Management of Degraded and Mining Lands (IRC-MEDMIND), research collaboration between Brawijaya University, Mataram University, Massey University, and Institute of Geochemistry, Chinese Academy of ...