International Journal Of Computer, Network Security and Information System (IJCONSIST)
Vol 5 No 2 (2024): March

Image Synthesis for Sperm Dataset Augmentation using WGAN-GP

Hajjar Ayu Cahyani Kuswardhani (Unknown)
I Gede Susrama Mas Diyasa (Unknown)
Mohammad Idhom (Unknown)



Article Info

Publish Date
01 Mar 2024

Abstract

This research explores the efficacy and limitations of applying a Wasserstein Generative Adversarial Network with Gradient Penalty (WGAN-GP) to generate synthetic human sperm microscopy images for data augmentation. We assessed the WGAN-GP's performance on a complex, heterogeneous dataset where images contained multiple object types. Despite achieving stable training convergence, the model's output quality was suboptimal, as evidenced by a high Fréchet Inception Distance (FID) score of 134 and qualitative signs of partial mode collapse. The generator struggled to capture the complete morphological diversity of the sperm cells. A second experiment using a dataset pre-sorted into distinct classes (Normal, Abnormal, Non-Sperm) yielded a marked improvement. This approach led to substantially lower FID scores (59.19, 74.92, and 83.56) and exhibited more robust training dynamics. Our findings underscore a critical conclusion: the success of WGAN-GP in this domain is fundamentally tied to the simplicity of the data distribution. We recommend that future efforts leverage class-conditioned models, simplified data structures, and refined generator architectures to achieve high-precision augmentation for medical imaging tasks.

Copyrights © 2024






Journal Info

Abbrev

ijconsist

Publisher

Subject

Computer Science & IT

Description

Focus and Scope The Journal covers the whole spectrum of intelligent informatics, which includes, but is not limited to : • Artificial Immune Systems, Ant Colonies, and Swarm Intelligence • Autonomous Agents and Multi-Agent Systems • Bayesian Networks and Probabilistic Reasoning • ...