Sindrom Ovarium Polikistik (SOPK) adalah gangguan hormonal yang sering terjadi pada wanita usia reproduktif dan menjadi salah satu penyebab utama masalah kesuburan. Sekitar 3–15% wanita di seluruh dunia mengalami kondisi ini, yang juga dapat memicu berbagai masalah kesehatan lainnya. Penelitian ini bertujuan untuk mengembangkan metode diagnosis SOPK yang lebih efisien dan akurat dengan memanfaatkan algoritma Extreme Learning Machine (ELM) yang dikombinasikan dengan seleksi fitur menggunakan Particle Swarm Optimization (PSO). ELM dipilih karena kemampuannya dalam melakukan klasifikasi secara cepat, sedangkan PSO digunakan untuk memilih fitur-fitur yang paling relevan. Hasil seleksi fitur menghasilkan 18 fitur terpilih dari total 40 fitur. Pencarian parameter terbaik dilakukan dengan pendekatan random search dan grid search. Hasil menunjukkan bahwa random search memberikan performa terbaik, dengan akurasi 95.35%, sensitivitas 96.67%, dan spesifisitas 92.65%. Tanpa seleksi fitur, ELM hanya menghasilkan akurasi 84.20%, sensitivitas 90.10%, dan spesifisitas 70.62%. Temuan ini menunjukkan bahwa seleksi fitur menggunakan PSO mampu meningkatkan performa klasifikasi ELM secara signifikan.
Copyrights © 2025