According to the Global Burden of Disease (GBD) Study, stroke is the third leading cause of death globally. Recognizing its signs early is crucial for both prevention and effective treatment. Although machine learning has made significant progress in predicting strokes, many current models operate like "black boxes", making them hard to interpret and often resulting in high error rates. This study aims to enhance prediction accuracy and interpretability in stroke risk detection by integrating Winsorizing Interquartile Range (IQR) for outlier management, a tree-based classification method, and Explainable Artificial Intelligence (XAI) techniques. The proposed approach applies Winsorizing Interquartile Range to handle extreme values while employing tree-based methods for prediction due to their superior performance in processing tabular data. Additionally, Explainable Artificial Intelligence techniques are utilized to improve model transparency and interpretability. Testing was conducted using the Cerebral Stroke Prediction-Imbalanced Dataset, comparing results with various existing models. The suggested approach demonstrated the lowest prediction error rates, achieving a False Positive Rate (FPR) of 15.74% and a False Negative Rate (FNR) of 8.56%. Additionally, it attained an accuracy of 84.39%, sensitivity of 91.43%, specificity of 84.26%, Area Under the Receiver Operating Characteristic Curve (AUROC) of 94.74%, and G-Mean of 87.76%, outperforming previous studies in stroke risk prediction. The combination of Winsorizing Interquartile Range, Random Under-Sampling, tree-based classification, and Explainable Artificial Intelligence techniques effectively enhances prediction accuracy and transparency, supporting early stroke detection with improved interpretability. This study contributes to medical informatics by integrating transparent predictive models suitable for decision support systems.
Copyrights © 2025