Jurnal Teknologi dan Manajemen Informatika
Vol. 11 No. 2 (2025): Desember 2025

Sentiment Analysis Of NTB Syariah Bank Application Services using The Naïve Bayes and Support Vector Machine Methods

Nabil, Muh (Unknown)
Vitianingsih, Anik Vega (Unknown)
Kacung, Slamet (Unknown)
Lidya Maukar, Anastasia (Unknown)
Fitri Ana Wati, Seftin (Unknown)



Article Info

Publish Date
17 Dec 2025

Abstract

This research analyzed user sentiment toward the NTB Syariah application using Support Vector Machine (SVM) and Naïve Bayes classification methods. A dataset comprising 814 reviews was obtained via web scraping, with 245 allocated for testing. Preprocessing encompassed cleaning, case folding, tokenization, filtering, and stemming, while sentiment labeling employed a lexicon-based approach integrated with TF-IDF weighting, categorizing reviews as positive, neutral, or negative. Model performance was assessed through accuracy, precision, recall, and F1-score metrics. Results demonstrated SVM's superior performance (accuracy: 92.65%; precision: 0.9327; recall: 0.9265; F1-score: 0.9149) compared to Naïve Bayes (accuracy: 84.49%; precision: 0.8415; recall: 0.8449; F1-score: 0.8005). SVM exhibited greater robustness in managing high-dimensional, complex, and moderately imbalanced datasets, delivering consistent cross-class sentiment classification. Conversely, Naïve Bayes remained computationally efficient and suitable for rapid implementation scenarios. These findings underscore machine learning's efficacy in sentiment analysis for digital banking platforms.

Copyrights © 2025






Journal Info

Abbrev

jtmi

Publisher

Subject

Computer Science & IT Decision Sciences, Operations Research & Management Engineering

Description

Jurnal Teknologi dan Manajemen Informatika (JTMI) diterbitkan oleh Fakultas Teknologi Informasi Universitas Merdeka Malang. JTMI terbit 2 edisi per tahun pada Januari - Juni dan Juli - Desember dengan scope ilmu komputer yang mencakup teknologi informasi, sistem informasi, dan manajemen informatika. ...