Early fire detection is a critical requirement in indoor safety systems, where delays of only a few seconds can escalate into severe damage and casualties. Conventional devices often rely on single-sensor thresholds, which are highly susceptible to false alarms and unstable performance in dynamic indoor environments. This study develops an Internet of Things (IoT)-based multi-sensor fire detection and autonomous firefighting system integrated with a C4.5 decision tree classifier for real-time hazard recognition and short-term risk prediction. The prototype combines DHT22 temperature, MQ-135 gas, infrared flame, and ultrasonic water-level sensors with an ESP32 microcontroller, servo-controlled nozzle, and pump-based water spraying, all connected to an Android–Firebase platform for remote monitoring. A multivariate time-series dataset of 200 sensor sequences was preprocessed using a five-step sliding-window model and evaluated through 1,000 repeated hold-out trials. The C4.5 classifier achieved a mean accuracy of 84.9%, with peak values exceeding 90%, and clearly separated Safe, Alert, and Danger states, with smoke concentration emerging as the dominant predictor. Experimental tests in a 60 × 40 × 30 cm chamber produced 1–2 s reaction times, eight successful extinguishing events, and four failures attributable to mechanical belt detachment rather than model errors. These findings indicate that interpretable decision-tree models, when combined with IoT sensing and autonomous actuation, can provide a low-cost framework for real-time fire warning and automatic suppression. Future work should address mechanical robustness, extended deployment, and multi-room scalability
Copyrights © 2025