This article outlines a revolutionary approach to immunotherapy and stem-cell cancer treatments that leverages Boron Neutron Cancer Therapy (BNCT). We formulated two models, one being the immunotherapy-BNCT model and the other featuring a stem-cell model and BNCT therapy. The former simulates the dynamics of the concentration of BNCT with anticancer properties present at the cancer site, the number of cancer cells, and the blood drug concentration, while considering periodicity. Similarly, using boronophenylalanine in the simulation, our stem-cell BNCT model evaluates the drug’s impact on the dynamics of cancer cells, stem cells, effector cells, and BNCT involvement. Using the eigenvalues of the Jacobian matrix calculated from those solutions, each model is examined for the stability of equilibrium solutions. Next, the equilibrium solution is generated and found to be unstable using the simulation parameters given in the literature. Furthermore, one of the equilibrium solutions has a zero-value variable, rendering it practically meaningless. The models have impacted the new approach to utilizing BNCT in immunotherapy and stem-cell therapy, underscoring the need for follow-up in developing stable and balanced model parameters. Such efforts will improve the existing model while also yielding positive results from the BNCT approach.
Copyrights © 2026