BAREKENG: Jurnal Ilmu Matematika dan Terapan
Vol 20 No 2 (2026): BAREKENG: Journal of Mathematics and Its Application

A COMPARATIVE STUDY OF PIPELINE-VALIDATED MACHINE LEARNING CLASSIFIERS FOR PERMISSION-BASED ANDROID MALWARE DETECTION

Lubis, Arif Ridho (Unknown)
Wulandari, Dewi (Unknown)
Adha, Lilis Tiara (Unknown)
Ariyani, Tika (Unknown)
Lase, Yuyun (Unknown)
Lubis, Fahdi Saidi (Unknown)



Article Info

Publish Date
26 Jan 2026

Abstract

The growing prevalence of Android malware distributed through third-party APK sideloading poses a significant security threat to users and developers. This study aims to evaluate the effectiveness of three machine learning algorithms—Logistic Regression (LR), Random Forests (RF), and Gradient Boosting Machine (GBM)—for static Android malware detection based on permission features. The experiment employs the publicly available Android Malware Prediction Dataset (Kaggle, accessed 2025), containing 4,464 application samples with 328 binary permission attributes. A leakage-free CRISP-DM workflow was implemented, integrating data cleaning, automated feature selection via SelectKBest (Mutual Information), and hyperparameter optimisation using GridSearchCV with stratified 5-fold cross-validation. Results on the unseen hold-out test set show that GBM achieved the best performance, with 96.05% accuracy and 0.9924 ROC-AUC, outperforming LR and RF. In addition, GBM exhibited superior probability calibration (Brier Score = 0.0344) and interpretability, as confirmed through SHAP analysis. The ablation study further validated that optimal model performance saturates at 30–40 selected features. This research contributes a reproducible and pipeline-validated comparative framework for static Android malware detection, addressing prior studies’ limitations regarding feature selection bias and data leakage. Nevertheless, the study is limited by its reliance on static permission features and the absence of dynamic behavioural data, which may restrict generalisation to evolving malware families.

Copyrights © 2026






Journal Info

Abbrev

barekeng

Publisher

Subject

Computer Science & IT Control & Systems Engineering Economics, Econometrics & Finance Energy Engineering Mathematics Mechanical Engineering Physics Transportation

Description

BAREKENG: Jurnal ilmu Matematika dan Terapan is one of the scientific publication media, which publish the article related to the result of research or study in the field of Pure Mathematics and Applied Mathematics. Focus and scope of BAREKENG: Jurnal ilmu Matematika dan Terapan, as follows: - Pure ...