JUSIFOR : Jurnal Sistem Informasi dan Informatika
Vol 4 No 2 (2025): JUSIFOR - Desember 2025

Komparasi Kinerja Algoritma XGBoost dengan Reduksi Dimensi PCA pada Klasifikasi Diabetes

Nusa, Rivale Belano (Unknown)
Indahsari, Rina Dewi (Unknown)



Article Info

Publish Date
31 Dec 2025

Abstract

Diabetes is one of the most prevalent chronic diseases worldwide and requires accurate early detection to prevent long-term complications. In the field of medical data analysis, the application of machine learning algorithms such as XGBoost has proven effective in classifying disease risk. This study aims to compare the performance of the XGBoost algorithm before and after applying Principal Component Analysis (PCA) in diabetes risk classification using the Early Stage Diabetes Risk Prediction Dataset. The research stages include data preprocessing involving missing value checking, label encoding, outlier removal, normalization, and followed by the application of PCA with a 90% variance retention threshold. The experimental results show that the XGBoost model without PCA achieved the highest accuracy of 99.04%, while the model with PCA achieved 98.08%. Although the application of PCA slightly reduced accuracy, this technique successfully decreased the number of features and improved computational efficiency without losing important information. Therefore, PCA is proven to be effective in simplifying data complexity while maintaining optimal model performance.

Copyrights © 2025






Journal Info

Abbrev

jusifor

Publisher

Subject

Computer Science & IT Decision Sciences, Operations Research & Management Engineering Library & Information Science

Description

JUSIFOR adalah jurnal akses terbuka di bidang Informatika dan Sistem Informasi. Jurnal ini tersedia bagi para peneliti yang ingin meningkatkan pengetahuan mereka dibidang tertentu dan dimaksudkan untuk menyebarkan pengalaman hasil studi. JUSIFOR merupakan Jurnal penelitian ilmiah bidang informatika ...