Hydroponic cultivation of lettuce (Lactuca sativa) offers high water efficiency, yet productivity is frequently compromised by rapid disease spread and nutrient imbalances. Traditional manual monitoring is labor-intensive, time-consuming, and prone to subjective diagnostic errors, often leading to delayed interventions. This study aims to develop an automated, real-time disease detection system by integrating Deep Learning algorithms with an Internet of Things (IoT) architecture. The proposed method utilizes an optimized One-Stage Object Detector based on the YOLO framework, specifically designed for efficient deployment on edge computing devices. The model was trained and validated on a diverse dataset encompassing healthy plants, tip-burn, leaf spot, and nutrient deficiencies, employing rigorous data augmentation to ensure robustness against indoor lighting variability. Experimental results demonstrate that the system achieves a Mean Average Precision (mAP@0.5) of 94.8%, significantly outperforming conventional Support Vector Machine (SVM) approaches and standard detectors. The model maintains high detection accuracy even under complex background conditions. In conclusion, this research provides a viable, low-latency solution for precision agriculture, enabling growers to automate plant health monitoring and effectively minimize crop losses.
Copyrights © 2025