INOVTEK Polbeng - Seri Informatika
Vol. 11 No. 1 (2026): February

Enhancing Sleep Disorder Prediction Through Feature Engineering and Stacking Ensemble Learning on Imbalanced Lifestyle Data

Julianto, Richy (Unknown)
Prasetiyo, Budi (Unknown)



Article Info

Publish Date
14 Jan 2026

Abstract

Undiagnosed sleep disorders pose significant cardiovascular risks, necessitating accessible screening tools beyond invasive clinical procedures. This study aims to develop a robust diagnostic framework using the Sleep Health and Lifestyle Dataset. To address class imbalance and enhance predictive sensitivity, a Stacking Ensemble architecture integrating Random Forest, Gradient Boosting, CatBoost, and XGBoost is implemented, augmented by Pulse Pressure feature engineering and the Synthetic Minority Over-sampling Technique (SMOTE). The proposed model achieved a superior accuracy of 98.61% and a recall of 99.24%, significantly outperforming single classifiers. Feature analysis further identified heart rate and sleep duration as critical physiological determinants. These findings conclude that combining feature engineering with optimized ensemble learning offers a highly accurate diagnostic approach with rapid training convergence, providing a scalable pathway for early sleep disorder detection.

Copyrights © 2026






Journal Info

Abbrev

ISI

Publisher

Subject

Computer Science & IT

Description

The Journal of Innovation and Technology (INOVTEK Polbeng—Seri Informatika) is a distinguished publication hosted by the State Polytechnic of Bengkalis. Dedicated to advancing the field of informatics, this scientific research journal serves as a vital platform for academics, researchers, and ...