Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)
Vol 9 No 6 (2025): December 2025

Evaluating Steganography Detection in JPEG Images Using Gaussian Mixture Model and Cryptographic Keys

Saputro, Indrawan Ady (Unknown)
Nugraha, Febrianta Surya (Unknown)
Sugiarto, Lilik (Unknown)
Prabowo, Iwan Ady (Unknown)



Article Info

Publish Date
28 Dec 2025

Abstract

This study introduces a novel approach that integrates Gaussian Mixture Models (GMM) with MD5 hash-based verification to detect hidden messages embedded via Least Significant Bit (LSB) steganography in JPEG images. Unlike previous methods, the proposed dual-layer technique combines probabilistic modeling with data integrity verification. The model was trained and evaluated using a dataset comprising both original and stego-JPEG images. The experimental results achieved an accuracy of 78.67% and a precision of 89.15%, indicating good class separation between stego and non-stego images (AUC-ROC = 0.8659). However, the recall rate of 69.70% suggests that there is room for improvement in detecting all stego instances. Although MD5 is a hash function rather than an encryption algorithm, it effectively aids in identifying data anomalies resulting from message embedding. Overall, this lightweight approach offers a practical solution for steganalysis and can be further enhanced through the integration of hybrid deep learning techniques in future research.

Copyrights © 2025






Journal Info

Abbrev

RESTI

Publisher

Subject

Computer Science & IT Engineering

Description

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) dimaksudkan sebagai media kajian ilmiah hasil penelitian, pemikiran dan kajian analisis-kritis mengenai penelitian Rekayasa Sistem, Teknik Informatika/Teknologi Informasi, Manajemen Informatika dan Sistem Informasi. Sebagai bagian dari semangat ...