Elkom: Jurnal Elektronika dan Komputer
Vol. 18 No. 2 (2025): Desember : Jurnal Elektronika dan Komputer

Analisis Sentimen Ulasan E-Commerce Menggunakan Metode SVM

Ryzal Nur Alvandy (Unknown)
Arita Witianti (Unknown)



Article Info

Publish Date
14 Dec 2025

Abstract

The rapid expansion of e-commerce in Indonesia has resulted in a significant rise in the number of customer reviews, which serve as a valuable source of insight for understanding consumer satisfaction. This study aims to classify or identify sentiments from product reviews on the Tokopedia platform into three categories, using the Support Vector Machine algorithm. The classification method data were ethically collected through web scraping and include review text, ratings, and the number of “likes.”  The preprocessing stage involved several NLP techniques such as pre-procesesing data representation was generated using the Term Frequency–Inverse Document Frequency method, while the issue of class imbalance was addressed using the Synthetic Minority Over-sampling Technique.  Based on the test results, the SVM model achieved an accuracy of 79.48% on the test data using a linear kernel, showing the best performance in classifying positive sentiments. However, the classification of neutral and negative sentiments still requires improvement. This study demonstrates that the combination of the TF-IDF method, additional numerical features, and data balancing techniques can produce an an efficient sentiment analysis model within the e-commerce domain.

Copyrights © 2025






Journal Info

Abbrev

elkom

Publisher

Subject

Education

Description

Elkom : Jurnal Elektronika dan Komputer merupakan Jurnal yang diterbitkan oleh SEKOLAH TINGGI ELEKTRONIKA DAN KOMPUTER (STEKOM). Jurnal ini terbit 2 kali dalam setahun yaitu pada bulan Juli dan Desember. Misi dari Jurnal ELKOM adalah untuk menyebarluaskan, mengembangkan dan menfasilitasi hasil ...