Tematik : Jurnal Teknologi Informasi Komunikasi
Vol. 12 No. 2 (2025): Tematik : Jurnal Teknologi Informasi Komunikasi (e-Journal) - Desember 2025

Algoritma Value Based Untuk Pembangunan Bot Trading Yahoo Finance

Acep Hendra (Unknown)
Supeno, Handoko (Unknown)



Article Info

Publish Date
20 Dec 2025

Abstract

The advancement of artificial intelligence, particularly reinforcement learning (RL), has driven innovation in automated decision-making for financial markets. While Deep Reinforcement Learning (DRL) is widely applied, it often requires significant computational resources and lacks transparency. This study proposes a lightweight, replicable, value-based RL (Q-Learning) trading bot utilizing open data from Yahoo Finance. The system is developed end-to-end, covering data acquisition, preprocessing, RL agent design, and strategy evaluation. The Q-Learning agent is trained to execute daily actions (buy, sell, hold) to maximize cumulative returns and minimize risk. Experimental results show that the Q-Learning Bot achieved a cumulative return of 145.7%, outperforming Buy-and-Hold (120.5%) and Moving Average Crossover (85.3%), with lower maximum drawdown (-18.7% vs -35.0%). A Sharpe Ratio of 1.35 and a win rate of 58.9% indicate superior risk-adjusted performance. These findings demonstrate that Tabular Q-Learning has strong potential as an adaptive and effective trading approach with low computational cost.

Copyrights © 2025






Journal Info

Abbrev

tematik

Publisher

Subject

Computer Science & IT

Description

TEMATIK - Jurnal Teknologi Informasi Dan Komunikasi merupakan jurnal ilmiah sebagai bentuk pengabdian dalam hal pengembangan bidang Teknologi Informasi Dan Komunikasi serta bidang terkait lainnya. TEMATIK - Jurnal Teknologi Informasi Dan Komunikasi diterbitkan oleh LPPM dan Program Studi Manajemen ...