JURTEKSI
Vol. 12 No. 1 (2025): Desember 2025

FORECASTING THE JAKARTA COMPOSITE INDEX USING LSTM BASED ON INDONESIAN MARKET DATA

Yunita, Reni (Unknown)
Egi Dio Bagus Sudewo (Unknown)
Azyana Alda Sirait (Unknown)



Article Info

Publish Date
20 Dec 2025

Abstract

Abstract: The capital market plays an important role in describing the economic conditions of a country, and the IHSG is used as the main indicator to observe the movement of all stocks on the Indonesia Stock Exchange. Because stock data is volatile and non-linear, the forecasting process becomes challenging, requiring methods that can capture historical patterns more accurately. This study aims to predict IHSG movements using the Long Short-Term Memory (LSTM) model to generate stable short-term predictions. Historical IHSG data was used to train the model, and accuracy was evaluated using Mean Squared Error (MSE). The results show that the model obtained an MSE 6784.0207, RMSE 82.3652 and MAPE 0.88%, indicating a relatively low prediction error rate. The visualization shows that the model's predictions are very close to the actual data, and the 60-day forecasting results show a potential increase in the IHSG of 1.05%. Thus, the LSTM model is capable of providing fairly accurate IHSG predictions and can be a useful tool for investors in analyzing short-term market movements. Keywords: forecasting; JCI; long short term memory Abstrak: Pasar modal memiliki peran penting dalam menggambarkan kondisi ekonomi suatu negara, dan IHSG digunakan sebagai indikator utama untuk melihat pergerakan seluruh saham di Bursa Efek Indonesia. Karena data saham bersifat fluktuatif dan tidak linear, proses peramalan menjadi tantangan, sehingga dibutuhkan metode yang mampu menangkap pola historis secara lebih akurat. Penelitian ini bertujuan memprediksi pergerakan IHSG menggunakan model Long Short-Term Memory (LSTM) untuk menghasilkan prediksi jangka pendek yang stabil. Data historis IHSG digunakan untuk melatih model, kemudian akurasi dievaluasi menggunakan Mean Squared Error (MSE). Hasil penelitian menunjukkan bahwa model memperoleh nilai MSE 6784.0207, RMSE 82.3652 dan MAPE 0.88% yang menandakan tingkat kesalahan prediksi relatif rendah. Visualisasi menunjukkan bahwa prediksi model sangat mendekati data aktual, dan hasil forecasting 60 hari ke depan memperlihatkan potensi kenaikan IHSG sebesar 1,05%. Dengan demikian, model LSTM mampu memberikan prediksi IHSG yang cukup akurat dan dapat menjadi alat bantu bagi investor dalam menganalisis pergerakan pasar jangka pendek. Kata kunci: peramalan; JCI; memori jangka pendek

Copyrights © 2025






Journal Info

Abbrev

jurteksi

Publisher

Subject

Computer Science & IT

Description

JURTEKSI (Jurnal Teknologi dan Sistem Informasi) is a scientific journal which is published by STMIK Royal Kisaran. This journal published twice a year on December and June. This journal contains a collection of research in information technology and computer ...