Prosiding Seminar Nasional Sisfotek (Sistem Informasi dan Teknologi Informasi)
Vol 9 No 1 (2025): SISFOTEK IX 2025

Peningkatan Signifikan Kualitas Klaster K-Means Berbasis DBI: Integrasi UMAP-K-Means

Restu Normalasari (Unknown)
Siti Sopiyah (Unknown)
Yudhistira Arie Wijaya (Unknown)



Article Info

Publish Date
24 Jan 2026

Abstract

This research focuses on improving the quality of high-dimensional data clustering results through the integration of Uniform Manifold Approximation and Projection (UMAP) and the K-Means algorithm. The main objective is to evaluate how UMAP, when used as a preprocessing stage, enhances cluster compactness and separation produced by K-Means. The experiment compares two approaches—standard K-Means and the UMAP + K-Means combination—using the Davies–Bouldin Index (DBI) as the primary evaluation metric. Empirical findings indicate that UMAP integration significantly reduces the DBI value from 0.704 to 0.094, representing an 86.6% improvement in clustering quality. Furthermore, visual analysis shows that UMAP enables K-Means to form more compact and clearly separated clusters. These results confirm that manifold-based embeddings like UMAP effectively overcome K-Means limitations in handling nonlinear, high-dimensional data. This study contributes to the development of more accurate and efficient clustering approaches applicable to various domains, including bioinformatics, medical imaging, and socio-economic data analysis.

Copyrights © 2025






Journal Info

Abbrev

SISFOTEK

Publisher

Subject

Computer Science & IT

Description

Seminar Nasional Sistem Informasi dan Teknologi (SISFOTEK) merupakan ajang pertemuan ilmiah, sarana diskusi dan publikasi hasil penelitian maupun penerapan teknologi terkini dari para praktisi, peneliti, akademisi dan umum di bidang sistem informasi dan teknologi dalam artian ...