This study analyzes the performance of several machine learning algorithms in classifying student achievement in English language courses. The research focuses on comparing the performance of K-Nearest Neighbors (KNN), Naïve Bayes, Random Forest, and Support Vector Machine (SVM) using the K-Fold Cross Validation approach to evaluate accuracy, F1-score, and fairness. The dataset, consisting of students’ final grades, was processed through data pre-processing and feature scaling. Results show that the KNN model with K=5 achieved the highest accuracy of 100%, followed by Naïve Bayes with 95.59%. Statistical tests indicated a significant performance difference between Random Forest and SVM, while fairness evaluation revealed that Random Forest provided the most balanced error distribution. These findings confirm that KNN and Random Forest algorithms are highly effective for academic performance classification based on numerical data. The study highlights the potential of machine learning to enhance adaptive, objective, and equitable educational evaluation systems.
Copyrights © 2025