Prosiding Seminar Nasional Sisfotek (Sistem Informasi dan Teknologi Informasi)
Vol 9 No 1 (2025): SISFOTEK IX 2025

Analisis Kinerja Algoritma Machine Learning untuk Klasifikasi Prestasi Mahasiswa pada Mata Kuliah Bahasa Inggris

Riri Narasati (Unknown)
Dadang Sudrajat (Unknown)
Ahmad Faqih (Unknown)
Indra Wiguna Marthanu (Unknown)
Agus Bahtiar (Unknown)



Article Info

Publish Date
25 Jan 2026

Abstract

This study analyzes the performance of several machine learning algorithms in classifying student achievement in English language courses. The research focuses on comparing the performance of K-Nearest Neighbors (KNN), Naïve Bayes, Random Forest, and Support Vector Machine (SVM) using the K-Fold Cross Validation approach to evaluate accuracy, F1-score, and fairness. The dataset, consisting of students’ final grades, was processed through data pre-processing and feature scaling. Results show that the KNN model with K=5 achieved the highest accuracy of 100%, followed by Naïve Bayes with 95.59%. Statistical tests indicated a significant performance difference between Random Forest and SVM, while fairness evaluation revealed that Random Forest provided the most balanced error distribution. These findings confirm that KNN and Random Forest algorithms are highly effective for academic performance classification based on numerical data. The study highlights the potential of machine learning to enhance adaptive, objective, and equitable educational evaluation systems.

Copyrights © 2025






Journal Info

Abbrev

SISFOTEK

Publisher

Subject

Computer Science & IT

Description

Seminar Nasional Sistem Informasi dan Teknologi (SISFOTEK) merupakan ajang pertemuan ilmiah, sarana diskusi dan publikasi hasil penelitian maupun penerapan teknologi terkini dari para praktisi, peneliti, akademisi dan umum di bidang sistem informasi dan teknologi dalam artian ...