Claim Missing Document
Check
Articles

Found 6 Documents
Search

Perbandingan Hasil Klasifikasi Rasa Minuman Thai Tea yang Paling Digemari Menggunakan K-means dan K-medoids Dita Rizki Amalia; Riri Narasati; Ahmad Faqih
Prosiding Seminar Nasional Unimus Vol 2 (2019): Tantangan Implementasi Hasil Riset Perguruan Tinggi untuk Industrialisasi
Publisher : Universitas Muhammadiyah Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Data Mining saat ini semakin marak digunakan obaik oleh instansi, perusahaan, maupun organisasi. Dalam hal ini Peneliti tertarik meneliti tentang minuman yang sedang menjadi tren dalam masyarakat karena melihat minat yang besar di kalangan masyaraka., Ranah dalam penelitian ini adalah menggunakan data mining dengan kmedoids dan k-means, dimana dalam pengelompokkan kedua algorima ini memperoleh hal yang sama namun cara yang berbeda k-menas dengan mengambil nilai rata-rata sedangkan k-medoids dengan mengambil nilaitengah. Langkah dalam data mining adalah data seleksi, data cleaning, data authentication,data integration, dan data transformation. Hasil penelitian menunjukkan kedua metode menghasilkan cluster yang sama yaitu rekomendasi rasa thai tea original dengan susu dan greentea dengan susu dengan nilai centroid 0,286 sesuai dengan target penelitian.Kata kunci: Data Mining, K-Means, K-Medoids B, Clustering.
Diagnosa Tingkat Depresi Mahasiswa Tingkat Akhir STMIK IKMI Cirebon Menggunakan Algoritma K-NN Gustiani Regina Pratama Putri; Tati Suprapti; Riri Narasati
ICIT Journal Vol 10 No 2 (2024): Agustus 2024
Publisher : UNIVERSITAS RAHARJA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33050/icit.v10i2.3012

Abstract

Depresi dapat menjangkit siapa saja tanpa kecuali, mulai dari remaja sampai orang dewasa. Bahkan saat ini, tidak sedikit ditemukan kasus yang berkaitan dengan pelajar termasuk pelajar yang melakukan aksi bunuh diri . Maka dari dilakukannya diagnosa dini tingkat depresi yang dialami oleh mahasiswa tingkat akhir di STMIK IKMI Cirebon agar dapat dilakukan pencegaan terhadap hal-hal yang tidak diinginkan. Penelitian ini menggunakan metode pendekatan CRISP-DM dan algoritma K-NN. Sebelum masuk ke tahap pengklasifikasian, terlebih dahulu dilakukan pembentukan kelas menggunakan algoritma K-Means Clustering dengan K = 3. Hasil pengklasteran menunjukkan bahwa Cluster_0 adalah tingkat non-depresi, Cluster_1 tingkat depresi berat, dan Cluster_2 sebagai tingkat gejala depresi. Setelah dataset memiliki kelas, kemudian pengklasifikasian dilakukan menggunakan algoritma K-NN dengan K = 10. Hasil evaluasi Confusion Matrix menunjukkan nilai akurasi yang cukup besar, yaitu 91,75%. Cluster_0 memiliki nilai akurasi 93,55% dan nilai presisi 92,06%. Nilai akurasi dan presisi pada Cluster_2 sama besar yaitu 91,3%, sedangkan untuk Cluster_1 nilai akurasinya 90% dan nilai presisinya 91,84%. Dari visualisasi data hasil klasifikasi ditemukan bahwa mahasiswa tingkat akhir STMIK IKMI Cirebon berada pada tingkat non-depresi.
Bibliometrik Analysis: Optimasi Regresi Linear untuk Estimasi Big Data pada Database Scopus Tahun 2013-2024 Ahmad Faqih; Riri Narasati
Prosiding SISFOTEK Vol 8 No 1 (2024): SISFOTEK VIII 2024
Publisher : Ikatan Ahli Informatika Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

This bibliometric analysis investigates the optimization of linear regression for big data estimation, focusing on publication trends, citation metrics, geographic distribution, and research innovations from 2013 to 2024. The publication trend analysis reveals a significant increase in research on linear regression optimization, peaking in 2023, followed by a decline in 2024. Citation analysis shows that although this topic is relatively new, it has gained increasing scientific recognition, indicating its growing relevance. The geographic distribution highlights China, the United States, and the United Kingdom as the leading contributors to research on linear regression optimization for big data. Key innovations in this field include the application of quantum algorithms and advanced optimization techniques, which have significantly improved computational efficiency and the accuracy of linear regression models in handling large and complex datasets. These findings underscore that linear regression optimization will continue to evolve and make important contributions to big data analytics.
Bibliometrik Analysis: Pembelajaran Speaking Session Menggunakan Instagram Pada Data Base Scopus 2014-2024 Riri Narasati; Ahmad Faqih; Dadang Sudrajat
Prosiding SISFOTEK Vol 8 No 1 (2024): SISFOTEK VIII 2024
Publisher : Ikatan Ahli Informatika Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

In today's digital age, social media plays an important role in various aspects of life, including education. This research explores the use of Instagram as a learning tool to improve English speaking skills. Through bibliometric analysis, this study identifies previous research trends and evaluates the effectiveness of Instagram-based learning methods. It also reviews existing literature to understand how Instagram has been used in language learning contexts, as well as identifying existing research gaps. The results show that the use of Instagram in English language learning can increase student motivation and participation. Interaction through video, story and dialog-based content on Instagram proved effective in improving speaking skills. The study also found that the use of project-based tasks on Instagram can help students in developing their confidence and speaking ability. In addition, this study highlights the importance of structured guidance and feedback in maximizing the benefits of learning through Instagram. This research makes a novel contribution to the literature by offering a more in-depth approach to the use of Instagram in English language learning. By exploring effective learning strategies and their impact on students' speaking skills, this study explores the role of Instagram in English language learning.
Pemberdayaan Kelompok Tani melalui Sistem Informasi Pertanian Berbasis Android Riri Narasati; Rudi Kurniawan; Fikri Firmansyah; Gilang Ramadhan
AMMA : Jurnal Pengabdian Masyarakat Vol. 1 No. 04 (2022): AMMA : Jurnal Pengabdian Masyarakat
Publisher : CV. Multi Kreasi Media

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Farmer group empowerment is one of the important strategies in increasing agricultural productivity and farmer welfare. This research aims to develop and implement an Android-based agricultural information system as a medium for empowering farmer groups in Nganjuk Regency. The system is designed to provide access to agricultural information in a fast, accurate, and relevant manner, including weather information, commodity prices, cultivation techniques, and consultation with agricultural extension workers. The research method used is descriptive qualitative research with a case study approach. The system development process refers to the Waterfall model which includes the stages of analysis, design, implementation, testing, and maintenance. The implementation results show that the use of an Android-based information system significantly increases farmer group involvement in agricultural activities, accelerates the decision-making process, and improves access to agricultural information resources. In addition, the system facilitates two-way communication between farmers and extension workers, which was previously constrained by time and location limitations. The conclusion of this research is that information technology, especially Android applications, has great potential in empowering farmer groups in a sustainable manner. It is hoped that this system can be adopted more widely by other regions as an information technology-based farmer empowerment solution.
Pelatihan Penggunaan Smartphone dan Aplikasi Komunikasi Digital untuk Peningkatan Kompetensi Lansia Yudhistira Arie Wijaya; Riri Narasati; Mifta Almaripat; Mita Amelia
AMMA : Jurnal Pengabdian Masyarakat Vol. 1 No. 04 (2022): AMMA : Jurnal Pengabdian Masyarakat
Publisher : CV. Multi Kreasi Media

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Advances in digital technology have had a significant impact in various aspects of life, including for the elderly. However, limited digital knowledge and skills cause many elderly people to not be able to utilize technology optimally. This community service activity aims to improve the digital competence of the elderly through training on the use of smartphones and daily communication applications such as WhatsApp and Google Meet. The methods used include a participatory approach, direct assistance, and repeated practice of using digital applications in a friendly and fun atmosphere. The activity was carried out at Posyandu Lansia Kelurahan Jatimakmur, Bekasi, involving 30 elderly participants aged 60-75 years. The results of the activity showed a significant improvement in the participants' ability to use smartphones, access communication applications, and understand digital communication ethics. Evaluation was conducted through pre-test and post-test, as well as direct observation during the training. The majority of participants stated that they felt more confident and motivated to continue learning to use technology. Supporting factors for the success of this activity included the personal approach, the patience of the facilitators, and the use of visual and practical methods. Meanwhile, the challenges faced included participants' physical limitations, such as visual and hearing impairments, and memory limitations. This activity makes a real contribution to the digital empowerment efforts of the elderly, and opens up opportunities for the development of similar programs in other regions. Hopefully, this kind of training can be the first step towards comprehensive digital inclusion for all levels of society.