International Journal of Electrical and Computer Engineering
Vol 16, No 1: February 2026

Students performance clustering for future personalized in learning virtual reality

Alaoui, Ghalia Mdaghri (Unknown)
Zouhair, Abdelhamid (Unknown)
Khabbachi, Ilhame (Unknown)



Article Info

Publish Date
01 Feb 2026

Abstract

This study investigates five clustering algorithms—K-Means, Gaussian mixture model (GMM), hierarchical clustering (HC), k-medoids, and spectral clustering—applied to student performance in mathematics, reading, and writing to support the development of virtual reality (VR)-based adaptive learning systems. Cluster quality was assessed using Davies-Bouldin and Calinski-Harabasz indices. Spectral clustering achieved the best results (DBI = 0.75, CHI = 1322), followed by K-Means (DBI = 0.79, CHI = 1398), while HC demonstrated superior robustness to outliers. Three distinct student profiles—beginner, intermediate, and advanced—emerged, enabling targeted adaptive interventions. Supervised classifiers trained on these clusters reached up to 99% accuracy (logistic regression) and 97.5% (support vector machine (SVM)), validating the discovered groupings. This work introduces a novel, data-driven methodology integrating unsupervised clustering with supervised prediction, providing a practical framework for designing immersive VR learning environments.

Copyrights © 2026






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...