Penentuan tingkat kesejahteraan masyarakat memiliki peran penting dalam proses penyaluran bantuan sosial di tingkat desa. Namun, pendataan berbasis observasi manual masih menghadirkan potensi bias subjektif dan ketidakkonsistenan dalam pengambilan keputusan. Penelitian ini bertujuan mengembangkan model klasifikasi tingkat kesejahteraan masyarakat Desa Cikuya menggunakan algoritma Naïve Bayes sebagai pendekatan berbasis data yang lebih objektif. Tahapan penelitian meliputi pengumpulan data sosial ekonomi, pra-pemrosesan, encoding variabel kategorik, normalisasi variabel numerik, pelatihan model Gaussian Naïve Bayes, serta evaluasi menggunakan metrik akurasi, precision, recall, dan f1-score. Hasil penelitian menunjukkan bahwa model menghasilkan akurasi sebesar 98,33%, yang menunjukkan performa klasifikasi yang sangat baik. Analisis lebih lanjut mengindikasikan bahwa variabel pendapatan dan kondisi fisik rumah memiliki peranan paling dominan dalam membedakan kategori kesejahteraan. Model yang dikembangkan tidak hanya berfungsi sebagai alat klasifikasi, tetapi juga dapat dimanfaatkan sebagai sistem pendukung keputusan bagi pemerintah desa untuk menilai status kesejahteraan masyarakat secara lebih cepat, konsisten, dan bebas bias subjektif. Penelitian ini memberikan kontribusi pada pemanfaatan teknologi pembelajaran mesin dalam pemetaan kesejahteraan masyarakat, meskipun masih memiliki keterbatasan pada jumlah variabel dan cakupan data lokal. Temuan ini diharapkan dapat menjadi dasar pengembangan sistem penyaluran bantuan yang lebih tepat sasaran dan transparan.
Copyrights © 2026