Claim Missing Document
Check
Articles

Found 3 Documents
Search

IMPLEMENTASI ANALISIS PENELUSURAN PENGIRIMAN BARANG PAKET BERBASIS ANDROID DENGAN METODE AGILE PADA ANANDAMAYA RESIDENCES Arif Rinaldi; Fajar Wahyu Utomo; Fransiskus Chandra Kencana
Buletin Ilmiah Ilmu Komputer dan Multimedia Vol 1 No 4 (2023): Buletin Ilmiah Ilmu Komputer dan Multimedia (BIIKMA)
Publisher : Shofanah Media Berkah

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

− Pendataan dan pengiriman paket menghadapi masalah serius yang menuntut perubahan. Metode manual rentan terhadap kesalahan dan kehilangan data, mengganggu proses pengiriman dan meningkatkan biaya operasional. Kehilangan paket, kurangnya dokumentasi, dan kerusakan selama pengiriman menjadi masalah utama. Tujuannya adalah memperbaiki pendataan, meningkatkan dokumentasi, dan melacak paket yang hilang. Penelitian ini akan menggunakan wawancara, observasi, dan studi pustaka, serta menerapkan model pengembangan perangkat lunak Extreme Programming (XP). Anandamaya Residences memiliki infrastruktur teknologi tinggi, termasuk jaringan komputer, koneksi internet cepat, dan pusat data yang aman. Apartemen ini adalah proyek hasil kolaborasi antara Astra International dan Hongkong Land, menawarkan fasilitas kelas dunia di Jakarta Pusat.
Klasifikasi Tingkat Kesejahteraan Masyarakat Desa Cikuya Berdasarkan Data Sosial Ekonomi Menggunakan Algoritma Nive Bayes Ramdan Irawan; Rudi Kurniawan; Bani Nurhakim; Arif Rinaldi; Fathurrahman
Jurnal Sistem Informasi dan Teknologi Vol 6 No 1 (2026): Jurnal Sistem Informasi dan Teknologi (SINTEK)
Publisher : LPPM STMIK KUWERA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56995/sintek.v6i1.203

Abstract

Penentuan tingkat kesejahteraan masyarakat memiliki peran penting dalam proses penyaluran bantuan sosial di tingkat desa. Namun, pendataan berbasis observasi manual masih menghadirkan potensi bias subjektif dan ketidakkonsistenan dalam pengambilan keputusan. Penelitian ini bertujuan mengembangkan model klasifikasi tingkat kesejahteraan masyarakat Desa Cikuya menggunakan algoritma Naïve Bayes sebagai pendekatan berbasis data yang lebih objektif. Tahapan penelitian meliputi pengumpulan data sosial ekonomi, pra-pemrosesan, encoding variabel kategorik, normalisasi variabel numerik, pelatihan model Gaussian Naïve Bayes, serta evaluasi menggunakan metrik akurasi, precision, recall, dan f1-score. Hasil penelitian menunjukkan bahwa model menghasilkan akurasi sebesar 98,33%, yang menunjukkan performa klasifikasi yang sangat baik. Analisis lebih lanjut mengindikasikan bahwa variabel pendapatan dan kondisi fisik rumah memiliki peranan paling dominan dalam membedakan kategori kesejahteraan. Model yang dikembangkan tidak hanya berfungsi sebagai alat klasifikasi, tetapi juga dapat dimanfaatkan sebagai sistem pendukung keputusan bagi pemerintah desa untuk menilai status kesejahteraan masyarakat secara lebih cepat, konsisten, dan bebas bias subjektif. Penelitian ini memberikan kontribusi pada pemanfaatan teknologi pembelajaran mesin dalam pemetaan kesejahteraan masyarakat, meskipun masih memiliki keterbatasan pada jumlah variabel dan cakupan data lokal. Temuan ini diharapkan dapat menjadi dasar pengembangan sistem penyaluran bantuan yang lebih tepat sasaran dan transparan.
Klasifikasi Tingkat Kesejahteraan Masyarakat Desa Cikuya Berdasarkan Data Sosial Ekonomi Menggunakan Algoritma Nive Bayes Ramdan Irawan; Rudi Kurniawan; Bani Nurhakim; Arif Rinaldi; Fathurrahman
Jurnal Sistem Informasi dan Teknologi Vol 6 No 1 (2026): Jurnal Sistem Informasi dan Teknologi (SINTEK)
Publisher : LPPM STMIK KUWERA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56995/sintek.v6i1.203

Abstract

Penentuan tingkat kesejahteraan masyarakat memiliki peran penting dalam proses penyaluran bantuan sosial di tingkat desa. Namun, pendataan berbasis observasi manual masih menghadirkan potensi bias subjektif dan ketidakkonsistenan dalam pengambilan keputusan. Penelitian ini bertujuan mengembangkan model klasifikasi tingkat kesejahteraan masyarakat Desa Cikuya menggunakan algoritma Naïve Bayes sebagai pendekatan berbasis data yang lebih objektif. Tahapan penelitian meliputi pengumpulan data sosial ekonomi, pra-pemrosesan, encoding variabel kategorik, normalisasi variabel numerik, pelatihan model Gaussian Naïve Bayes, serta evaluasi menggunakan metrik akurasi, precision, recall, dan f1-score. Hasil penelitian menunjukkan bahwa model menghasilkan akurasi sebesar 98,33%, yang menunjukkan performa klasifikasi yang sangat baik. Analisis lebih lanjut mengindikasikan bahwa variabel pendapatan dan kondisi fisik rumah memiliki peranan paling dominan dalam membedakan kategori kesejahteraan. Model yang dikembangkan tidak hanya berfungsi sebagai alat klasifikasi, tetapi juga dapat dimanfaatkan sebagai sistem pendukung keputusan bagi pemerintah desa untuk menilai status kesejahteraan masyarakat secara lebih cepat, konsisten, dan bebas bias subjektif. Penelitian ini memberikan kontribusi pada pemanfaatan teknologi pembelajaran mesin dalam pemetaan kesejahteraan masyarakat, meskipun masih memiliki keterbatasan pada jumlah variabel dan cakupan data lokal. Temuan ini diharapkan dapat menjadi dasar pengembangan sistem penyaluran bantuan yang lebih tepat sasaran dan transparan.