Sinergi
Vol 30, No 1 (2026)

Real-time deep neural network-based waste detection and classification using a camera sensor

Darlis, Arsyad Ramadhan (Unknown)
Lidyawati, Lita (Unknown)
Kristiana, Lisa (Unknown)
Hartati, Etih (Unknown)
Trisani, Faradilla Rizqi (Unknown)



Article Info

Publish Date
17 Jan 2026

Abstract

Waste generation is a growing environmental concern, with manual sorting methods often being inefficient and error-prone, particularly under varying lighting and environmental conditions. In Indonesia, waste is typically categorized into organic and nonorganic, yet existing automated classification systems lack real-time capabilities and robustness in dynamic settings. This study proposes a novel real-time waste detection and classification system using a deep neural network, implemented on the Jetson Nano platform with a camera sensor. The system utilizes the ResNet-18 convolutional neural network architecture and is developed using Python. It is designed to distinguish between organic and nonorganic waste in real-time. Training was conducted over 30 epochs, and the system was tested under various lighting conditions—morning, daytime, afternoon, and nighttime. Results show high accuracy: 95.24% in the morning, 95.24% during the day, 90.45% in the afternoon, and 86.90% at night, with an average accuracy of 91.96%. Performance was influenced by factors such as lighting intensity, distance, waste position, changes in organic waste, and occlusion by plastic. The proposed system offers a significant improvement over traditional and existing methods by enabling accurate, real-time waste classification under diverse conditions, contributing to more efficient and intelligent waste management.

Copyrights © 2026






Journal Info

Abbrev

sinergi

Publisher

Subject

Civil Engineering, Building, Construction & Architecture Control & Systems Engineering Electrical & Electronics Engineering Engineering Industrial & Manufacturing Engineering

Description

SINERGI is a peer-reviewed international journal published three times a year in February, June, and October. The journal is published by Faculty of Engineering, Universitas Mercu Buana. Each publication contains articles comprising high quality theoretical and empirical original research papers, ...