Sinergi
Vol 30, No 1 (2026)

An effective and efficient vehicle detection using ER-EMA-YOLOv10n

Kutika, Imanuel (Unknown)
Lahimade, Vicky Nolant Setyanto (Unknown)
Todingan, Tomi Heri Julius (Unknown)
Prasetya, Hebron (Unknown)
Sentinuwo, Steven Ray (Unknown)
Putro, Muhamad Dwisnanto (Unknown)



Article Info

Publish Date
16 Jan 2026

Abstract

Vehicle detection plays a key role in automating traffic analysis, a field that continues to advance rapidly. Vision-based systems identify vehicle types and sizes, but achieving high accuracy and efficiency remains a challenge. Reliable real-world deployment requires optimized models that balance performance and computational cost. YOLOv10n, the most efficient version of the YOLO family, offers a solid foundation for lightweight feature extraction. To improve its detection performance, this study proposes an enhanced version of YOLOv10n by incorporating a scale-aware attention mechanism. We proposed the Expanded Refinement Efficient Multi-Scale Attention (ER-EMA) module, which enhances feature encoding by capturing vehicle characteristics across multiple receptive fields. ER-EMA consists of two core components: the Expanded Converted Inverted Block (ECIB) and the Convolutional Refinement Block (CRB). These components use diverse convolutional kernels to extract and refine multi-frequency spatial features. Integrating ER-EMA into the YOLOv10n framework produces a more compact and accurate detection model. Experimental results show that the proposed model increases mAP@50 by 1%, while reducing the number of parameters by 0.1M and computation by 0.1 GFLOPS on the Vehicle-COCO dataset. On the UA-DETRAC benchmark, it achieves a 4% improvement in mAP@50:95, with a reduction of 0.2M in parameters and 0.4 GFLOPS in computational efficiency—outperforming the original YOLOv10n and prior methods in both performance and computational efficiency.

Copyrights © 2026






Journal Info

Abbrev

sinergi

Publisher

Subject

Civil Engineering, Building, Construction & Architecture Control & Systems Engineering Electrical & Electronics Engineering Engineering Industrial & Manufacturing Engineering

Description

SINERGI is a peer-reviewed international journal published three times a year in February, June, and October. The journal is published by Faculty of Engineering, Universitas Mercu Buana. Each publication contains articles comprising high quality theoretical and empirical original research papers, ...