International Journal Science and Technology (IJST)
Vol. 4 No. 3 (2025): November: International Journal Science and Technology

Predicting Defensive Formation Effectiveness in Football Using Random Forest and LSTM Models

Nurdiyanto Yusuf (Unknown)



Article Info

Publish Date
23 Jan 2026

Abstract

Defensive strategies are fundamental to football success, yet the evaluation of formation effectiveness often remains subjective. This study proposes a data-driven approach to predict the most effective defensive formations by integrating machine learning models. Using tracking-derived features from 150 professional European matches (2018–2023), Random Forest (RF) and Long Short-Term Memory (LSTM) models were applied to assess defensive outcomes. The results indicate that the 5-3-2 formation consistently achieved the highest predicted defensive success across direct, wing, and central attacks, followed by 4-4-2, while the 4-3-3 formation exhibited the weakest defensive stability. RF identified key static features such as line height, block width, and compactness, while LSTM captured temporal dynamics of coordinated player movements, yielding superior predictive performance. This study concludes that combining interpretable ensemble models with sequence-based neural networks offers a robust framework for tactical analysis. The findings provide actionable insights for coaches and analysts, supporting evidence-based decision-making in optimizing defensive strategies in modern football.

Copyrights © 2025






Journal Info

Abbrev

IJST

Publisher

Subject

Computer Science & IT Control & Systems Engineering Electrical & Electronics Engineering

Description

International Journal Science and Technology (IJST) is a scientific journal that presents original articles about research knowledge and information or the latest research and development applications in the field of technology. The scope of the IJST Journal covers the fields of Informatics, ...