Indonesian Journal of Applied Informatics
Vol 9, No 2 (2025)

Klasifikasi Tindakan Korektif Iregularitas dengan Penerapan Algoritma CART pada Perusahaan Logistik

Juwita Stefany Hutapea (Universitas Logistik dan Bisnis Internasional)
Nisa Hanum Harani (Universitas Logistik dan Bisnis Internasional)



Article Info

Publish Date
16 Jun 2025

Abstract

AbstrakPerusahaan logistik memiliki peran penting dalam menjaga kelancaran rantai pasok dan distribusi barang. Namun, sering kali terjadi iregularitas dalam proses pengiriman yang dapat menghambat operasional dan menurunkan kualitas layanan. Klasifikasi tindakan korektif iregularitas bertujuan untuk mengklasifikasikan dan memprediksi tindakan korektif yang dibutuhkan dalam melakukan evaluasi iregularitas menggunakan algortima Classification and Regression Tree (CART) dan metodologi CRISP-DM untuk tahapan penelitian. Data historis iregularitas dikumpulkan dari sebuah perusahaan logistik dan diolah. Model CART diterapkan dengan berbagai parameter tuning untuk mendapatkan performa terbaik. Hasil evaluasi menunjukkan bahwa model yang dibangun memiliki akurasi 90%, precision 0.97, recall 0.90, dan F1-score 0.92. Penelitian ini membuktikan bahwa algoritma CART cukup baik dalam mengklasifikasikan tindakan korektif dan memprediksi tindakan yang tepat. Sistem yang dihasilkan dapat membantu meningkatkan efisiensi operasional perusahaan logistik.===================================================Abstract :Logistics companies play a crucial role in ensuring the smooth flow of the supply chain and distribution of goods. However, irregularities in the delivery process often occur, which can disrupt operations and reduce service quality. The classification of corrective actions for irregularities aims to classify and predict the corrective actions needed in evaluating irregularities using the Classification and Regression Tree (CART) algorithm and the CRISP-DM methodology for the research phases. Historical irregularity data was collected from a logistics company and processed. The CART model was applied with various parameter tuning to achieve optimal performance. Evaluation results show that the developed model has an accuracy of 90%, with precision, recall, and F1-score values to be specified. This study demonstrates that the CART algorithm is effective in classifying corrective actions and predicting the appropriate actions. The resulting system can help improve the operational efficiency of the logistics company.

Copyrights © 2025






Journal Info

Abbrev

ijai

Publisher

Subject

Computer Science & IT

Description

Indonesian Journal of Applied Informatics publishes articles that are of significance in their respective fields whilst also contributing to the discipline of informatics as a whole and its application. Every incoming manuscript will first be examined by the Editorial Board in accordance with ...