Indonesian Journal of Applied Informatics
Vol 10, No 1 (2025)

Monitoring Kinerja Virtual Machine pada Lingkungan Google Cloud Platform dengan Notifikasi ke Media Sosial

Irna Widyaningsih (Universitas Nahdlatul Ulama Al Ghazali Cilacap)
Abdul Haq (Universitas Nahdlatul Ulama Al Ghazali Cilacap)
Tri Anggoro (Universitas Nahdlatul Ulama Al Ghazali Cilacap)



Article Info

Publish Date
19 Jan 2026

Abstract

Abstrak : Virtual Machine (VM) merupakan elemen penting dalam cloud computing karena mendukung fleksibilitas dan efisiensi pengelolaan sumber daya. Namun, lonjakan penggunaan VM dapat menurunkan kinerja jika tidak terdeteksi cepat. Penelitian ini mengembangkan sistem monitoring pada Google Cloud Platform (GCP) dengan Grafana yang terintegrasi Telegram untuk peringatan dini otomatis. Prometheus digunakan sebagai pengumpul metrik, sedangkan Grafana menampilkan visualisasi, berfokus pada pemantauan CPU secara real-time di Google Compute Engine (GCE). Notifikasi dikirim melalui Telegram ketika penggunaan CPU melewati ambang batas. Pengujian menunjukkan rata-rata keterlambatan notifikasi hanya 1 detik, kecuali satu anomali 11 detik. Pada skenario Threshold Validation, terjadi satu alert dengan CPU maksimum 37% dan rata-rata 29%, sedangkan Long Hold menghasilkan tiga alert dengan rata-rata 23,3% sesuai konfigurasi interval. Hasil ini membuktikan sistem mampu memberikan notifikasi hampir real-time, menjaga konsistensi, dan mendukung deteksi dini baik pada beban singkat maupun berkepanjangan di infrastruktur GCP.====================================================Abstract :Virtual Machines (VMs) are essential in cloud computing for flexibility and efficient resource management. However, sudden spikes in VM usage can degrade performance if not detected quickly. This study develops a monitoring system on Google Cloud Platform (GCP) using Grafana integrated with Telegram for automated early alerts. Prometheus collects metrics, while Grafana provides visualization, focusing on real-time CPU monitoring in Google Compute Engine (GCE). Alerts are sent via Telegram when CPU usage exceeds a set threshold. Testing shows an average notification delay of 1 second, except for a single 11-second anomaly. In the Threshold Validation scenario, one alert occurred with 37% maximum CPU and 29% average, while the Long Hold scenario produced three alerts with an average of 23.3%, following configured intervals. Results indicate the system delivers near real-time, consistent alerts and supports early detection under both short and sustained load conditions on GCP infrastructure.

Copyrights © 2025






Journal Info

Abbrev

ijai

Publisher

Subject

Computer Science & IT

Description

Indonesian Journal of Applied Informatics publishes articles that are of significance in their respective fields whilst also contributing to the discipline of informatics as a whole and its application. Every incoming manuscript will first be examined by the Editorial Board in accordance with ...