Jurnal Manajemen, Bisnis dan Kewirausahaan
Vol. 5 No. 3 (2025): Desember : Jurnal Manajemen, Bisnis dan Kewirausahaan

Demand Forecasting UMKM Kopi Keliling Berbasis Deep Learning Klasik

Hanifah Muthiah (Sekolah Tinggi Ilmu Ekonomi Bima)
Amirulmukminin (Sekolah Tinggi Ilmu Ekonomi Bima)



Article Info

Publish Date
30 Dec 2025

Abstract

Mobile coffee MSMEs are part of the creative economy sector that is rapidly growing in urban areas. However, these businesses face uncertainty in daily demand, which is influenced by time, weather, location, and consumer trends. Accurate demand prediction is required to optimize inventory management, reduce the risk of losses, and increase profitability. This study aims to apply a classical deep learning approach, namely Long Short-Term Memory (LSTM), to predict the daily demand of mobile coffee MSMEs. The research data includes daily sales over 18 months with external variables such as weather, weekdays/holidays, and location. The research results indicate that the LSTM model is able to capture seasonal patterns and trends better than classical methods (ARIMA), with higher accuracy for the 7-14 days prediction horizon. These findings support data-driven decision-making for MSME actors in managing inventory, determining strategic sales locations, and designing effective promotions.

Copyrights © 2025






Journal Info

Abbrev

JUMBIKU

Publisher

Subject

Decision Sciences, Operations Research & Management

Description

Jurnal Manajemen, Bisnis dan Kewirausahaan (JUMBIKU) : ISSN: 2827-8682 (cetak), ISSN: 2827-8666, Jurnal Manajemen, Bisnis dan Kewirausahaan berfokus pada penerbitan artikel berkualitas tinggi yang didedikasikan untuk semua aspek penelitian, masalah, dan perkembangan terbaru di bidang Ilmu Manajemen. ...