Journal of the Indonesian Mathematical Society
Volume 23 Number 2 (October 2017)

Full Identification of Idempotens in Binary Abelian Group Rings

Ong, Kai Lin (Unknown)
Ang, Miin Huey (Unknown)



Article Info

Publish Date
24 Dec 2017

Abstract

Every code in the latest study of group ring codes is a submodule thathas a generator. Study reveals that each of these binary group ring codes can havemultiple generators that have diverse algebraic properties. However, idempotentgenerators get the most attention as codes with an idempotent generator are easierto determine its minimal distance. We have fully identify all idempotents in everybinary cyclic group ring algebraically using basis idempotents. However, the conceptof basis idempotent constrained the exibilities of extending our work into the studyof identication of idempotents in non-cyclic groups. In this paper, we extend theconcept of basis idempotent into idempotent that has a generator, called a generatedidempotent. We show that every idempotent in an abelian group ring is either agenerated idempotent or a nite sum of generated idempotents. Lastly, we show away to identify all idempotents in every binary abelian group ring algebraically by fully obtain the support of each generated idempotent.

Copyrights © 2017






Journal Info

Abbrev

JIMS

Publisher

Subject

Mathematics

Description

Journal of the Indonesian Mathematical Society disseminates new research results in all areas of mathematics and their applications. Besides research articles, the journal also receives survey papers that stimulate research in mathematics and their ...