Ong, Kai Lin
IndoMS

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Full Identification of Idempotens in Binary Abelian Group Rings Ong, Kai Lin; Ang, Miin Huey
Journal of the Indonesian Mathematical Society Volume 23 Number 2 (October 2017)
Publisher : IndoMS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22342/jims.23.2.288.67-75

Abstract

Every code in the latest study of group ring codes is a submodule thathas a generator. Study reveals that each of these binary group ring codes can havemultiple generators that have diverse algebraic properties. However, idempotentgenerators get the most attention as codes with an idempotent generator are easierto determine its minimal distance. We have fully identify all idempotents in everybinary cyclic group ring algebraically using basis idempotents. However, the conceptof basis idempotent constrained the exibilities of extending our work into the studyof identication of idempotents in non-cyclic groups. In this paper, we extend theconcept of basis idempotent into idempotent that has a generator, called a generatedidempotent. We show that every idempotent in an abelian group ring is either agenerated idempotent or a nite sum of generated idempotents. Lastly, we show away to identify all idempotents in every binary abelian group ring algebraically by fully obtain the support of each generated idempotent.