Jurnal Teknologi Informasi dan Ilmu Komputer
Vol 4 No 2: Juni 2017

Klasifikasi Sepeda Motor Berdasarkan Karakteristik Konsumen Dengan Metode K-Nearest Neighbour Pada Big Data Menggunakan Hadoop Single Node Cluster

Putra, Nanda Agung (Unknown)
Putri, Ardisa Tamara (Unknown)
Prabowo, Dhimas Anjar (Unknown)
Surtiningsih, Listiya (Unknown)
Arniantya, Raissa (Unknown)
Cholissodin, Imam (Unknown)



Article Info

Publish Date
07 May 2017

Abstract

AbstrakPenelitian ini mengusulkan sebuah klasifikasi terhadap sepeda motor berdasarkan karakteristik konsumen. Sepeda motor memiliki beberapa jenis dan merk yang berbeda sehingga menyebabkan banyaknya pilihan yang dimiliki konsumen. Konsumen akan memilih sepeda motor yang diinginkannya berdasarkan latar belakang yang berbeda. Pada penelitian ini, Konsumen akan dikelompokkan berdasarkan sepeda motor yang dibeli sehingga penjual dapat mengetahui karakteristik konsumen yang membeli suatu jenis atau merk tertentu. Karakterisitik konsumen dapat ditentukan dengan usia, jenis kelamin, pendapatan, status pernikahan dan jumlah anak. Berdasarkan karakteristik tersebut perlu dilakukan pengelompokan untuk menentukan merk sepeda motor. Dalam penelitian ini metode yang digunakan yakni K-Nearest Neighbour (K-NN). K-NN merupakan algoritma yang umum digunakan untuk klasifikasi dan mencari kelas dari data uji dengan mayoritas kelompok yang memiliki jarak terdekat. Dataset yang digunakan dalam penelitian ini yaitu karakteristik konsumen. Uji coba dengan dataset tersebut menghasilkan merk sepeda motor dari data uji yang sudah ditentukan.Kata kunci: k-nearest neighbor, klasifikasi, k-nearest neighbor classification, sepeda motor.AbstractThis research proposed a classification of motorcycle based on customer’s characteristics. Motorcycles have different type and brand so that customers have many choices. Customer will choose motorcycle which they want to be based on different background. In this study, the customer will be grouped by motorcycle were purchased so that the seller can know characteristics of customers who buy certain type or brand. Characteristics of customers can be determined by age, gender, income, status and number of children. Based on these characteristic, we have to group for specifying motorcycle’s type. In this research, the method used K-Nearest Neighbor (K-NN). K-NN algorithm is commonly used for classifying and searching for a group of test data with the majority of the group that has the shortest distance. The dataset used in this project is the final consumer characteristics. Trials with the dataset produce motorcycle brand of test data that has been determined. Keywords: k-nearest neighbor, classification, k-nearest neighbor classification, motorcycle.

Copyrights © 2017






Journal Info

Abbrev

JTIIK

Publisher

Subject

Computer Science & IT Engineering

Description

Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK) merupakan jurnal nasional yang diterbitkan oleh Fakultas Ilmu Komputer (FILKOM), Universitas Brawijaya (UB), Malang sejak tahun 2014. JTIIK memuat artikel hasil-hasil penelitian di bidang Teknologi Informasi dan Ilmu Komputer. JTIIK berkomitmen ...