Listiya Surtiningsih, Listiya
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Klasifikasi Sepeda Motor Berdasarkan Karakteristik Konsumen Dengan Metode K-Nearest Neighbour Pada Big Data Menggunakan Hadoop Single Node Cluster Putra, Nanda Agung; Putri, Ardisa Tamara; Prabowo, Dhimas Anjar; Surtiningsih, Listiya; Arniantya, Raissa; Cholissodin, Imam
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 4 No 2: Juni 2017
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (911.878 KB) | DOI: 10.25126/jtiik.201742242

Abstract

AbstrakPenelitian ini mengusulkan sebuah klasifikasi terhadap sepeda motor berdasarkan karakteristik konsumen. Sepeda motor memiliki beberapa jenis dan merk yang berbeda sehingga menyebabkan banyaknya pilihan yang dimiliki konsumen. Konsumen akan memilih sepeda motor yang diinginkannya berdasarkan latar belakang yang berbeda. Pada penelitian ini, Konsumen akan dikelompokkan berdasarkan sepeda motor yang dibeli sehingga penjual dapat mengetahui karakteristik konsumen yang membeli suatu jenis atau merk tertentu. Karakterisitik konsumen dapat ditentukan dengan usia, jenis kelamin, pendapatan, status pernikahan dan jumlah anak. Berdasarkan karakteristik tersebut perlu dilakukan pengelompokan untuk menentukan merk sepeda motor. Dalam penelitian ini metode yang digunakan yakni K-Nearest Neighbour (K-NN). K-NN merupakan algoritma yang umum digunakan untuk klasifikasi dan mencari kelas dari data uji dengan mayoritas kelompok yang memiliki jarak terdekat. Dataset yang digunakan dalam penelitian ini yaitu karakteristik konsumen. Uji coba dengan dataset tersebut menghasilkan merk sepeda motor dari data uji yang sudah ditentukan.Kata kunci: k-nearest neighbor, klasifikasi, k-nearest neighbor classification, sepeda motor.AbstractThis research proposed a classification of motorcycle based on customer’s characteristics. Motorcycles have different type and brand so that customers have many choices. Customer will choose motorcycle which they want to be based on different background. In this study, the customer will be grouped by motorcycle were purchased so that the seller can know characteristics of customers who buy certain type or brand. Characteristics of customers can be determined by age, gender, income, status and number of children. Based on these characteristic, we have to group for specifying motorcycle’s type. In this research, the method used K-Nearest Neighbor (K-NN). K-NN algorithm is commonly used for classifying and searching for a group of test data with the majority of the group that has the shortest distance. The dataset used in this project is the final consumer characteristics. Trials with the dataset produce motorcycle brand of test data that has been determined. Keywords: k-nearest neighbor, classification, k-nearest neighbor classification, motorcycle.
Optimasi Naïve Bayes Classifier Dengan Menggunakan Particle Swarm Optimization Pada Data Iris Muhamad, Husin; Prasojo, Cahyo Adi; Sugianto, Nur Afifah; Surtiningsih, Listiya; Cholissodin, Imam
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 4 No 3: September 2017
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (746.584 KB) | DOI: 10.25126/jtiik.201743251

Abstract

AbstrakKlasifikasi adalah proses identifikasi obyek kedalam sebuah kelas, kelompok, atau kategori berdasarkan karakteristik yang telah ditentukan sebelumnya. Secara singkat, klasifikasi merupakan pengelompokan obyek berdasarkan kelompoknya yang biasanya disebut dengan kelas (class). Tak hanya klasifikasi, proses pengelompokkan obyek juga dapat dilakukan dengan menggunakan teknik clustering yang merupakan pengelompokan obyek berdasarkan kemiripan antar obyek. Salah satu metode klasifikasi yang sering digunakan adalah Naïve Bayes Classifier. Menurut beberapa penelitian, Naïve Bayes Classifier memiliki beberapa kelebihan yaitu, cepat dalam proses perhitungan, algoritma yang sederhana dan akurasi yang tinggi. Namun probabilitas pada Naïve Bayes Classifier tidak bisa mengukur seberapa besar tingkat keakuratan sebuah prediksi, hasil akurasi metode ini juga masih kurang jika dibandingkan dengan metode C4.5, selain itu metode naïve bayes juga memiliki kelemahan pada seleksi atribut. Untuk menyelesaikan permasalahan tersebut, algoritma particle swarm optimization (PSO) dapat digunakan untuk melakukan pembobotan atribut untuk meningkatkan akurasi naïve bayes classifier.Kata kunci: Naïve Bayes Classifier, Particle Swarm Optimization, klasifikasi, pembobotan atribut.AbstractClassification is the process of identifying objects into a class, group or category based on the predetermined characteristics. In other words, classification is a process to group objects based on their class. Grouping objects can be done not only by classification but also by clustering, which is grouping objects according to the similarity between objects. One of the most frequently used methods for classification is Naïve Bayes Classifier. According to some researchers, Naïve Bayes methods has its strength which is a simple and fast algorithm that can acquire a high accuracy. However, the probability of Naïve Bayes methods cannot measure the level of accuracy of a prediction, the accuracy of the results of this method is still less than the C4.5 method, and Naïve Bayes method has a deficiency on the selection of attributes. To solve this problem, Particle Swarm Optimization Algorithm (PSO) can be used to give weight to attributes to improve the accuracy of Naïve Bayes Classifier.Keywords: Naïve Bayes Classifier, Particle Swarm Optimization, classification, attribute weighting.