The number of disease cases has increased and decreased every month. This has an impact on the unbalanced of medicine availability such as, lack of supply of medicine, waste of medicine, medicine that are not on target, damaged medicine and so on. Therefore forecasting on number of disease cases is needed to determine the number of disease cases within a certain time. One of forecasting method that can be used is backpropagation neural network method. This method can be optimized using genetic algorithm to produce optimal results. The optimized parameters are weight and bias which will be used in backpropagation algorithm. The purpose of this study is to forecast the number of disease cases at Puskesmas Rogotrunan, Lumajang using backpropagation method optimized by genetic algorithm. From this study the optimal parameters of genetic algorithm are population=180, combination of cr and mr respectively 0,4 and 0,6, generation=100. The optimal parameters of backpropagation algorithm are total data=16, input neuron=6, iteration=1000, alfa=0,1. Accuray obtained with MSE=87,2 with data test of the number of disease cases in january to desember 2016. From the value of MSE obtained using backpropagation method optimized by genetic algorithm can be used to forecast the number of disease cases.
Copyrights © 2018