Kubik
Vol 3, No 1 (2018): KUBIK : Jurnal Publikasi Ilmiah Matematika

Spektrum Signless-Laplace dan Spektrum Detour Graf Konjugasi dari Grup Dihedral

Abdussakir Abdussakir (UIN Maulana Malik Ibrahim Malang)
Rhoul Khasanah (UIN Maulana Malik Ibrahim Malang)



Article Info

Publish Date
31 May 2018

Abstract

Misalkan G graf berhingga yang tidak memuat loop dan sisi rangkap. Matriks keterhubungan titik A(G) dari graf G adalah matriks dengan entri aij = 1 jika vi terhubung langsung dengan vj dan aij = 0 untuk lainnya. Matriks derajat D(G) dari graf G adalah matriks diagonal dengan entri dii merupakan derajat titik vi di G.  Matriks signless-Laplace dari graf G adalah L+(G) = D(G) + A(G). Matriks detour DD(G) dari graf G adalah matriks dengan entri ddij merupakan panjang lintasan terpanjang dari vi ke vj. Spektrum dari suatu matriks merupakan matriks yang memuat nilai eigen pada baris pertama dan multiplisitas masing-masing nilai eigen pada baris kedua. Spektrum yang diperoleh dari matriks L+(G) disebut spektrum signless-Laplace sedangkan spektrum yang diperoleh dari matriks DD(G) disebut spektrum detour. Penelitian ini menyajikan rumus untuk menghitung spektrum signless-Laplace graf konjugasi dari grup dihedral D2n untuk n ganjil (n ³ 5) dan spektrum detour graf konjugasi dari grup dihedral D2n untuk  ganjil (n ³ 3) dan  genap (n ³ 6).

Copyrights © 2018