Civil Engineering Journal
Vol 4, No 6 (2018): June

Investigation of the Effect of Dimensional Characteristics of Stone Column on Load-Bearing Capacity and Consolidation Time

Mohammad Reza Mohtasham (M.Sc Student, Civil Engineering department, University of Qom, Qom, Iran.)
Mahdi Khodaparast (Associate Professor, Civil Engineering department, University of Qom, Qom, Iran.)



Article Info

Publish Date
04 Jul 2018

Abstract

One of the best methods for rehabilitating loos and soft soils is the application of stone columns. This method enhances the soil properties by increasing its load-bearing capacity, decreasing the soil subsidence, and accelerating the consolidation rate. In the present paper, numerical analysis of a stone column of 10 m in length into a clayey soil using ABAQUS software is presented. The stone column was modelled based on the concept of unit cell, i.e. a single stone column with the surrounding soil. In this respect, material of the stone column was modelled using the elastoplastic behavioural model of Mohr-Coulomb, while Cam Clay behavioural model was used for the surrounding clayey soil. Furthermore, throughout the analyses performed in this study, effects of different parameters (e.g. applied load on rigid foundation, and the stone column length and diameter) on the subsidence and consolidation time of the rigid foundation were examined. The results indicated that, construction of a stone column into clayey soil decreases the subsidence and consolidation time of the soil considerably. In additions, increases in length and diameter of the stone column were found to significantly contribute to reduced subsidence and consolidation time of soil.

Copyrights © 2018






Journal Info

Abbrev

cej

Publisher

Subject

Civil Engineering, Building, Construction & Architecture

Description

Civil Engineering Journal is a multidisciplinary, an open-access, internationally double-blind peer -reviewed journal concerned with all aspects of civil engineering, which include but are not necessarily restricted to: Building Materials and Structures, Coastal and Harbor Engineering, ...