Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer
Vol 3 No 1 (2019): Januari 2019

Diagnosis Hama Penyakit Tanaman Bawang Merah Menggunakan Algoritma Modified K-Nearest Neighbor (MKNN)

Mohamad Yusuf Arrahman (Fakultas Ilmu Komputer, Universitas Brawijaya)
Nurul Hidayat (Fakultas Ilmu Komputer, Universitas Brawijaya)
Sutrisno Sutrisno (Fakultas Ilmu Komputer, Universitas Brawijaya)



Article Info

Publish Date
27 Aug 2018

Abstract

Red onion (Allium cepa L.) is a spice vegetable that is quite popular in Indonesia, has high economic value, serves as flavoring, and can be used as a traditional medicine ingredient. . However, obstacles encountered in the process of planting onions, one of the pests and diseases that often lead to crop failure. One method to diagnose diseases of shallot plants can be done with modified k-nearest neighbor (MKNN). The expert system of onion plant disease diagnosis using the k-nearest neighbor (MKNN) modified method can make it easier to detect diseases that attack onions based on symptoms. The k-nearest neighbor (MKNN) modified method is implemented on an expert system inference engine in order to draw conclusions based on existing knowledge on the knowledge base. Results obtained after the system accuracy test of 83.33% indicating that the modified k-nearest neighbor (MKNN) method is suitable for clove plant disease onion.

Copyrights © 2019






Journal Info

Abbrev

j-ptiik

Publisher

Subject

Computer Science & IT Control & Systems Engineering Education Electrical & Electronics Engineering Engineering

Description

Jurnal Pengembangan Teknlogi Informasi dan Ilmu Komputer (J-PTIIK) Universitas Brawijaya merupakan jurnal keilmuan dibidang komputer yang memuat tulisan ilmiah hasil dari penelitian mahasiswa-mahasiswa Fakultas Ilmu Komputer Universitas Brawijaya. Jurnal ini diharapkan dapat mengembangkan penelitian ...