ELINVO (Electronics, Informatics, and Vocational Education)
Vol. 2 No. 2 (2017): November 2017

PEMBAGIAN TINGKAT KECANDUAN GAME ONLINE MENGGUNAKAN K-MEANS CLUSTERING SERTA KORELASINYA TERHADAP PRESTASI AKADEMIK

Prastyo, Yudi (Unknown)



Article Info

Publish Date
11 Dec 2017

Abstract

Game online tidak hanya memberikan hiburan tetapi juga memberikan tantangan yang menarik untuk diselesaikan sehingga individu bermain game online tanpa memperhitungkan waktu demi mencapai kepuasan. Salah satu metode yang dapat digunakan untuk mengelompokkan tingkat kecanduan game online adalah metode K-Means Clustering. K-Means Clustering merupakan salah satu metode data clustering non hirarki yang berusaha mempartisi data yang ada ke dalam bentuk satu atau lebih cluster/kelompok.Penelitian ini mengambil data sample kuesioner dari mahasiswa di Universitas Ibn Khaldun Bogor dimana isian kuesioner akan diolah sebagai acuan pengelompokkan tingkat kecanduan game online.Hasil clusteringdigunakan untuk mengetahui hubungannya antara tingkat kecanduan game online terhadap prestasi akademik mahasiswa. K-Means Clustering memiliki berbagai keunggulan diantaranya sederhana untuk dipahami, mudah untuk diterapkan, membutuhkan sedikit pengetahuan, mampu menangani data numerik dan kategorikal, tangguh, dan dapat menangani dataset yang besar. Nilai korelasi yang dihasilkan sebesar -0,885yang berarti bahwa adanya korelasi antara tingkat kecanduan game online terhadap prestasi akademik mahasiswa di Universitas Ibn Khaldun Bogor

Copyrights © 2017






Journal Info

Abbrev

elinvo

Publisher

Subject

Computer Science & IT Education Electrical & Electronics Engineering

Description

ELINVO (Electronics, Informatics and Vocational Education) is a peer-reviewed journal that publishes high-quality scientific articles in Indonesian language or English in the form of research results (the main priority) and or review studies in the field of electronics and informatics both in terms ...