International Journal of Supply Chain Management
Vol 6, No 3 (2017): International Journal of Supply Chain Management (IJSCM)

Predicting Completion Time for Production Line in a Supply Chain System through Artificial Neural Networks

Ahmad Afif Ahmarofi (Universiti Utara Malaysia)
Razamin Ramli (Universiti Utara Malaysia)
Norhaslinda Zainal Abidin (Universiti Utara Malaysia)



Article Info

Publish Date
30 Sep 2017

Abstract

Completion time in manufacturing sector is the time needed to produce a product through production processes in sequence and it reflects the delivery performance of such company in supply chain system to meet customer demands on time. However, actual completion time always deviated from the standard completion time due to unavoidable factors and consequently affect delivery due date and ultimately lead to customer dissatisfaction. Therefore, this paper predicts completion time based on historical data of production line activities and discovers the most influential factor that contributes to the tardiness or a late jobs due date from its completion time. A well-known company in producing audio speaker is selected as a case company. Based on the review of previous works, it is found that Artificial Neural Networks (ANN) has superior capability in prediction of future occurrence by capturing the underlying relationship among variables through historical data. Besides, ANN is also capable to provide final weight for each of related variable. Variable with the highest value of final weight indicates the most influential variable and should be concerned more to solve completion time issue which has persisted among entities in supply chain system. The obtained result is expected to become an advantageous guidance for every entity in supply chain system to fulfil completion time requirement as requested by customer in order to survive in this turbulent market place.

Copyrights © 2017






Journal Info

Abbrev

IJSCM

Publisher

Subject

Decision Sciences, Operations Research & Management Engineering Environmental Science Industrial & Manufacturing Engineering Transportation

Description

International Journal of Supply Chain Management (IJSCM) is a peer-reviewed indexed journal, ISSN: 2050-7399 (Online), 2051-3771 (Print), that publishes original, high quality, supply chain management empirical research that will have a significant impact on SCM theory and practice. Manuscripts ...