CogITo Smart Journal
Vol 4, No 2 (2018): CogITo Smart Journal

Penerapan Algoritma J48 Decision Tree Untuk Analisis Tingkat Kemiskinan di Indonesia

Fergie Joanda Kaunang (Universitas Klabat)



Article Info

Publish Date
16 Jan 2019

Abstract

Kemiskinan telah menjadi masalah sosial dan tantangan bagi masyarakat di seluruh dunia yang terus dicari penyelesaiannya. Berdasarkan identifikasi dari Badan Program Pembangunan PBB (UNDP) yang bekerjasama dengan Oxford Poverty and Human Development Initiative (OPHI), 1.3 miliar penduduk dunia teridentifikasi sebagai penduduk miskin pada bulan September tahun 2018. Di tingkat nasional, Indonesia, tingkat kemiskinan tertinggi terjadi pada tahun 1999 dengan persentase sebesar 23.43%. Berdasarkan data dari Badan Pusat Statistik Indonesia (BPS), penduduk miskin di Indonesia mencapai 25.95 juta orang dengan persentase 9.82% pada tahun Maret 2018. Oleh karena itu penelitian ini bertujuan untuk menganalisis tingkat kemiskinan menggunakan dimensi dasar dari indeks pembangunan manusia (IPM) menggunakan metode data mining dan machine learning yakni algoritma J48 Decision Tree. Akurasi dari model prediksi yang telah dibuat menunjukan hasil yang baik yakni sebesar 88.6% dimana dengan kata lain model prediksi yang dikembangkan dapat digunakan untuk membantu para pembuat kebijakan maupun para pemangku kepentingan untuk mengambil keputusan. Kata kunci—Angka Kemiskinan, Indeks Pembangunan Manusia, Algoritma J48 Decision Tree, Data Mining, Machine Learning

Copyrights © 2018






Journal Info

Abbrev

cogito

Publisher

Subject

Computer Science & IT Decision Sciences, Operations Research & Management Education Electrical & Electronics Engineering

Description

CogITo Smart Journal adalah jurnal ilmiah di bidang Ilmu Komputer yang diterbitkan oleh Fakultas Ilmu Komputer Universitas Klabat anggota CORIS (Cooperation Research Inter University) dan IndoCEISS (Indonesian Computer Electronics and Instrumentation Support Society). CogITo Smart Journal dua kali ...